
Dense Visual-Inertial Odometry for Tracking of Aggressive Motions

Yonggen Ling and Shaojie Shen

Abstract— We propose a sliding window-based dense visual-
inertial fusion method for real-time tracking of challenging
aggressive motions. Our method combines recent advances in
direct dense visual odometry, inertial measurement unit (IMU)
preintegration, and graph-based optimization. At the front-end,
direct dense visual odometry provides camera pose tracking
that is resistant to motion blur. At the back-end, a sliding
window optimization-based fusion framework with efficient
IMU preintegration generates smooth and high-accuracy state
estimates, even with occasional visual tracking failures. A
local loop closure that is integrated into the back-end further
eliminates drift after extremely aggressive motions. Our system
runs real-time at 25Hz on an off-the-shelf laptop. Experimental
results show that our method is able to accurately track motions
with angular velocities up to 1000 degrees/s and velocities up
to 4 m/s. We also compare our method with state-of-the-art
systems, such as Google Tango, and show superior performance
during challenging motions. We show that our method achieves
reliable tracking results, even if we throw the sensor suite
during experiments.

I. INTRODUCTION

Accurate state estimation is essential for many robotic and
intelligent applications, such as aerial vehicles, humanoid
robots, and augmented reality. In practice, aggressive mo-
tions with large angular velocities and linear accelerations are
commonly observed on such platforms, making state estima-
tion extremely difficult. The visual-inertial system (VINS),
which consists of off-the-shelf cameras and a MEMS inertial
measurement unit (IMU), forms the ideal sensor suite for
fast motion estimation due to the complementary nature of
the sensors. Low-cost MEMS IMUs generate outlier-free but
noisy measurements that are ideal for short-term tracking of
fast motions. However, the IMUs also suffer from long-term
drift. On the other hand, the cameras are great for drift-free
tracking of slow movements. Nevertheless, tracking failure
is ultimately unavoidable due to the downgraded image qual-
ity during aggressive motions. Fusing the complementary
sensing modalities of the cameras and IMU is required for
reliable motion estimation [1]–[3].

Recent advances in high-performance mobile computing
have given rise to direct dense visual odometry methods [4,
5] that are resistant to motion blur and more adaptable
in featureless environments. Dense methods directly opti-
mize the camera motion by minimizing the difference in
image intensity. The elimination of feature extraction and
matching makes dense methods more robust in featureless
environments that are known to be unfavorable for corner [6]
or blob [7] detection. Dense methods are even able to

All authors are with the Department of Electronic and Computer Engi-
neering, The Hong Kong University of Science and Technology, Hong Kong,
China. ylingaa@connect.ust.hk,eeshaojie@ust.hk

track camera poses during fast movements where motion
blur patterns are similar between images. However, dense
methods are subject to failure during aggressive motions
during which camera pose tracks are broken into multiple
segments.

In this work, we address the problem of reliable track-
ing of aggressive motions in challenging environments by
proposing a system for real-time fusion of dense visual
odometry and IMUs. The front-end of our system is a state-
of-the-art direct dense visual odometry module [5]. At the
back-end, we utilize our IMU preintegration and two-way
marginalization techniques proposed recently in [3] to form
a sliding window estimator to connect and optimize motion
tracks from the front-end. A local dense loop closure module
further eliminates drift that may occur after very aggressive
motions. Our system can run real-time at 25 Hz on an off-
the-shelf laptop. Experimental results show that our method
is able to accurately track motions with angular velocities up
to 1000 degrees/s and velocities up to 4 m/s. To the best of
our knowledge, we are the first to demonstrate reliable state
estimation and trajectory recovery in extremely aggressive
motions. Our method achieves reliable tracking results, even
if we throw the sensor suite during experiments. 1

Next, in Section II, we review the state-of-the-art schol-
arly work. A system overview of the proposed method is
presented in Section III, and then Section IV provides the
details. Section V shows the implementation details and
experimental evaluation of our approach. Finally, Section
VI draws the conclusions and discusses possible future
extensions.

II. RELATED WORK

The scholarly work on visual-inertial fusion is exten-
sive. Different sensing modalities, including monocular [1]–
[3, 8, 9], stereo [10] and RGB-D cameras [11], have been
considered. At the back-end, fusion methods can mainly be
divided into two classes. In loosely-coupled fusion [8, 9, 11],
visual measurements are first processed independently to
obtain high-level pose information and then fused with
inertial measurements, usually using a filtering framework
(such as KF, EKF [8, 11] or UKF [9]). Effectively, two sub-
problems are solved separately in loosely-coupled fusion,
resulting in a lower computational cost, but results are
suboptimal. In tightly-coupled fusion [1]–[3, 10], both visual
and inertial measurements are fused and optimized in a
single framework. It considers the coupling between two

1 http://1drv.ms/1Hv2l8d

http://1drv.ms/1Hv2l8d

Fig. 1. The pipeline of our proposed method, which consists of the optimization thread, the dense tracking thread and the driver thread.

types of measurement and allows the adoption of a graph
optimization-based framework with iterative re-linearization
to achieve better performance. Tightly-coupled methods usu-
ally come with a higher computational cost.

Regardless of the use of loosely- or tightly-coupled meth-
ods, visual measurements are traditionally represented as
features [1]–[3, 8]–[11]. Sparse image features, such as blobs
and corners, are detected and tracked. Motion estimation can
then be performed from multiple observations of features.
However, the quality of features is largely determined by
image quality. When the camera undergoes aggressive mo-
tions, motion blur can seriously affect feature detection and
tracking performance, causing failure of the visual estimator.

To overcome the drawbacks of feature-based methods,
dense tracking methods that directly operate on image inten-
sities have become popular. Dense methods make full use
of all the available information in an image, which gives ro-
bustness and higher accuracy against motion blur [5, 12, 13].
While direct dense tracking is well-established in vision-only
settings (RGB-D [14], stereo [15] and monocular [5, 13]
cameras), few visual-inertial fusion methods that fully utilize
dense tracking exist. Most similar to our proposed approach
is the method proposed in [16], in which dense tracking
results are loosely fused with inertial measurements using
an extended Kalman filter. However, in our work, dense
tracking is fused with inertial measurements in a graph-
based optimization framework, where the tracking results
from multiple keyframes and local loop closure can be incor-
porated seamlessly. Our formulation allows drift correction
even after aggressive motions. In addition, inertial measure-
ments provide angular initialization for dense tracking, which
improves the convergence property during fast rotation and
helps with failure detection for dense tracking. We also
demonstrate reliable tracking in significantly more aggressive
motions than those presented in [16] with the same sensor
suite (Fig. 3).

III. SYSTEM OVERVIEW

The pipeline of our proposed system is illustrated in Fig. 1.
There are three threads in our algorithm. Multiple threads

run simultaneously utilizing the multi-core architecture. The
driver thread reads IMU data from the sensor, stores it
into a buffer, rectifies images if new images come and
sends them to the dense tracking thread. The dense tracking
thread obtains incremental camera motion using a direct
keyframe-to-frame dense tracking algorithm, assisted by an-
gular velocity from the gyroscope. This thread also identifies
instant tracking performance and determines whether to add a
keyframe or report tracking failure. If a keyframe is added, a
depth map will be calculated using a stereo block matching
algorithm. The optimization thread periodically checks the
frame list buffer. All frames (incremental camera motions)
and IMU measurements are added to the optimization thread.
If a keyframe is added, loop closure detection is performed
to find possible connections between keyframes. Graph-
optimization is then applied to find the maximum a posteriori
estimate of all the states within the sliding window using
connections from IMU preintegration, dense tracking, loop
closure and the prior. A two-way marginalization scheme
that selectively removes states is performed in order to
both bound the computational complexity and maximize the
information stored within the sliding window.

IV. DENSE VISUAL-INERTIAL FUSION

Before the proposed algorithm is detailed, we first list
assumptions that we adopt throughout this paper:

• Objects in the surroundings exhibit Lambertian reflec-
tion.

• The major part of the surroundings captured by the
cameras is static.

• The camera-IMU sensor suite is rigidly mounted, with
intrinsic and extrinsic parameters calibrated beforehand.

We consider (·)k as the camera frame while taking the
kth image, and (·)b as the instantaneous IMU body frame.
Without loss of generality, we assume that the cameras and
the IMU are aligned. pXY , vXY and RX

Y are the 3D position,
velocity and rotation of camera frame Y with respect to
frame X . We also have the corresponding quaternion (qXY =

[qx, qy, qz, qw]) representation. Hamilton notation is used
for quaternions.

Given two time instants that correspond to two images, we
can write the IMU propagation model for position, velocity
and rotation with respect to the first state of the system as
in [17],

p0
k+1 = p0

k + R0
kv

k∆t− g0∆t2/2 + R0
kα

k
k+1

vk+1 = Rk+1
k (vk + βkk+1 −Rk

0g0∆t)

q0
k+1 = q0

k ⊗ qkk+1,

(1)

where ∆t is the interval between the acquisition of two
images, and g0 is the gravity vector expressed in the first
state of the system. αkk+1 and βkk+1 can be obtained by
integrating the IMU measurements between time instants k
and k + 1, with the definitions detailed in Sect. IV-B.

A. Problem Formulation
We set the position and rotation of the first state to be

zero. The initial velocity and gravity vector can be obtained
using an online initialization method presented in [18]. The
full state vector is defined as

X = [x0
0,x

0
1, ...,x

0
N]

x0
k = [p0

k,v
k,q0

k] (2)

p0
0 = [0, 0, 0], q0

k = [0, 0, 0, 1].

Our goal is to obtain a maximum a posteriori (MAP) estimate
by minimizing the sum of the Mahalanobis norm of the
visual measurement residuals, inertial measurement residuals
and the prior:

min
X

(bp −ΛpX) +
∑
k∈Si

||rSi
(ẑkk+1,X)||2Pk

k+1
+ (3)∑

(i,j)∈Sc

||rSc
(ẑji ,X)||2

Pj
i

where Λp and bp are the prior matrix and prior residual
vector respectively, Si and Sc are the set of inertial and
visual measurements respectively. rSi

(ẑkk+1,X) is the resid-
ual function that measures the residual between the inertial
measurements and X with covariance Pk

k+1, and rSc(ẑji ,X)
is the residual function that measures the reprojection error
between the visual measurements and X with covariance Pj

i .
Inertial measurements are obtained by IMU preintegration

(Sect. IV-B) and visual measurements are obtained by dense
tracking (Sect. IV-C) and loop closure (Sect. IV-D).

B. IMU Preintegration
We adopt the pre-integration method proposed in our pre-

vious work [3]. The integration from the IMU measurement
between time instant k and k + 1 is

ẑkk+1 =

α̂
k
k+1

β̂
k

k+1

q̂kk+1

 =


∫∫
t∈[k,k+1]

Rk
t a
b
tdt

2∫
t∈[k,k+1]

Rk
t a
b
tdt∫

t∈[k,k+1]
Ω(ωbt)qkt dt

 , (4)

where

Ω(ωbt) =
1

2

[
−
⌊
ωbt×

⌋
ωbt

−ωbtT 0

]
, (5)

and abt and ωbt are the instantaneous linear acceleration and
angular velocity in the IMU body frame at time instant t
respectively. The residual function between the states and
the IMU measurement is defined as

rSi
(ẑkk+1,X) =

δαkk+1

δβkk+1

δθkk+1


=

Rk
0(p0

k+1 − p0
k + g0 ∆t2

2)− vk∆t− α̂kk+1

Rk
0(R0

k+1v
k+1 + g0∆t)− vk − β̂

k

k+1

2[(q̂kk+1)−1(q0
k)−1q0

k+1]xyz

 .
(6)

The covariance Pk
k+1 can be calculated by iteratively lin-

earizing the continuous-time dynamics of the error term and
then updating it with discrete-time approximation:

Pk
t+δt =(I + Ftδt) ·Pk

t · (I + Ftδt)
T

+ (I + Gtδt) ·Qt · (I + Gtδt)
T (7)

with the initial condition Pk
k = 0. Ft and Gt are the state

transition Jacobians with respect to the states and the IMU
measurement noise respectively. Detailed derivation can be
found in [3].

C. Dense Tracking

Since the surrounding environment exhibits Lambertian
reflection, the image intensity is supposed to be the same
regardless of the viewing angles or positions. We aim to
find the rigid-body transformation between state i and state
j, denoted as Tj

i = {tji ,R
j
i} ∈ SE(3), that minimizes the

intensity differences:

Tj
i

∗
= arg min

Tj
i

∫∫
δI(Tj

i ,u)du (8)

δI(Tj
i ,u) = Ii[u]− Ij [π(Rj

iπ
−1(u, du) + tji)], (9)

where u is the coordinate of a pixel, Ik[u] is the intensity
value of pixel u in image k, π(·) : R3 → R2 is the projection
function that projects a 3-D point f = [x, y, z]T into the
image coordinate u = (u, v), and π−1(·) is the inverse
project function. As (8) is a highly non-linear function,
we adopt the Gauss-Newton approach on the Lie-manifolds,
which iteratively re-linearizes (8) around the current estimate
T̂j
i and then performs incremental updates until convergence:

T̂j
i ← T̂j

i ⊗ exp(ξ), (10)

where ξ = (δtji , δθ
j
i) ∈ se(3) is the minimum dimension

error state. The bridge between Lie algebra se(3) and Lie
group SE(3) is the exponential map exp(ξ). For more details
about Lie algebra and Lie group, please refer to [19].

Solving (8) with linearization results in solving the linear
system

JTJξ = JTr, (11)

where J is a Jacobian matrix that forms by stacking Jaco-
bians of the image intensity differences (8) with respect to

Fig. 2. The process of our two-way marginalization, which marginalizes all the available information (motion estimates from dense tracking, inertial
measurement, loop closure relation and prior) into a new prior and maintains bounded computation complexity. Front marginalization marginalizes the
second newest state and back marginalization marginalizes the oldest state within the sliding window.

ξ, and r is the corresponding intensity differences vector. M
is the number of valid pixels within the image coordinate
range,

J =

 ∂
∂ξδI(T̂j

i ⊗ exp(ξ),ui1)

...
∂
∂ξδI(T̂j

i ⊗ exp(ξ),uiM)


|ξ=0

, r =

 δI(T̂j
i ,u

i
1)

...

δI(T̂j
i ,u

i
M)

 .
(12)

To better handle outliers, a weighted version of (11) is
applied:

JTWJξ = JTWr, (13)

where W is a diagonal matrix with weights computed
according to the Huber kernel thresholding on intensity
differences. Image pyramids are also adopted to increase
the convergence region and handle large movements. For
efficiency reasons, only pixels with noticeable gradients are
used in dense tracking.

The visual measurement ẑji in (3) is ẑji = Tj
i

∗
, and the

residual function is defined as

rSc(ẑji ,X) =

[
δtji
δθji

]
=

[
Rj

0(p0
j − p0

i)− t̂ji
2[(q̂ji)

−1(q0
j)
−1q0

i]xyz

]
, (14)

where q̂ji is the quaternion representation of R̂j
i . The covari-

ance Pj
i is set as the inverse of the Hessian matrix JTWJ

at the final iteration.

D. Dense Tracking-based Local Loop Closure and Tracking
Failure Detection

Our local loop closure module seeks possible connec-
tions between states within the sliding window in order to
eliminate drift, even after very aggressive motions (Fig. 6
and Fig. 7). Loop closure detection is also done by dense
tracking, but between two keyframes.

To avoid wrong loop closure links between states, cross
checking is adopted so as to improve the confidence. Suppose

frame k is fixed as a new keyframe to the sliding window.
We enumerate all the other keyframes within the sliding
window to check whether there is another keyframe, serving
as reference frame, that can track frame k successfully.
If keyframe i tracks frame k successfully, frame k will
serve as the reference frame and track frame i. The cross
checking is successful if the two corresponding rigid-body
transformations are consistent. For efficiency reasons, only
the coarsest pyramid level is used for the cross check.
Keyframe i, after passing the cross check, will track frame
k again with all pyramid levels. A link between state i and
state k is added if the full-pyramid tracking is successful.

Since the tracking covariance matrix (JTWJ)−1 tells
us about the dense tracking performance, we reject dense
tracking results if the covariance is greater than a certain
threshold. Also, if the rigid-body transformation estimated
by the dense tracking is not consistent with the initial guess
from the IMU integration, the dense tracking is considered
to have failed and no links from visual measurement will be
added.

E. Two-way Marginalization

Due to the limited memory and computational resources
of the system, we can merely maintain a certain number
of states and measurements within the sliding window. We
convert states that carry less information into a prior matrix
{Λp,bp} by marginalization. Note that the effectiveness of
loop closure and drift elimination depends on whether an
older state is kept within the sliding window. For this reason,
unlike traditional approaches which only marginalize old
states, we use a two-way marginalization scheme that was
first introduced in our earlier work [18] to selectively remove
old or more recent states in order to enlarge the covered
regions of the sliding window.

Fig. 2 illustrates the process of our two-way marginal-
ization. Front marginalization removes the second newest

state, while back marginalization removes the oldest state.
Blue circles represent key states, green circles represent the
states to be marginalized and brown circles represent the
incoming states. The relation between states and frames is
that states include poses and velocities and take uncertainty
into account, while frames include poses and images. Each
frame has its corresponding state and vise versa. States are
linked by IMU preintegration (inertial link), dense tracking
(tracking link), loop closure (loop closure link) and the prior
(prior link). To perform front marginalization, the second
newest state is first linked with the incoming state (step 1)
and then marginalized out (step 2). For back marginalization,
the oldest state is simply marginalized out (steps 1-2). After
marginalization, the third step decides which state is to be
marginalized in the next round (front marginalization or back
marginalization).

Mathematically, to marginalize a specific state, we remove
all links related to it and then add the removed links into a
prior:

Λp =Λp +
∑
k∈S−

i

(Hk
k+1)T(Pk

k+1)−1Hk
k+1

+
∑

(i,k)∈S−
c

(Hk
i)T(Pk

i)−1Hk
i (15)

bp =bp +
∑
k∈Si

−

(Hk
k+1)T(Pk

k+1)−1rSi
(ẑkk+1,X)

+
∑

(i,k)∈Sc
−

(Hk
i)T(Pk

i)−1rSc
(ẑji ,X), (16)

where S−i and Sc
− are the set of removed IMU preinte-

gration measurements and visual measurements respectively.
The prior is then marginalized via the Schur complement
[20].

The criterion to select whether to use front or back
marginalization are based on the dense tracking performance.
If the dense tracking is good and the second newest state is
near to the current keyframe, the second newest state will
be marginalized in the next round. Otherwise, the oldest
state will be marginalized. We threshold the distance by a
weighted combination of translation and rotation between the
current keyframe and the second newest frame.

Note that our two-way marginalization is fundamentally
different from traditional keyframe-based approaches that
simply drop non-keyframes. We preserve all the information
(IMU and dense tracking) from non-keyframes by only
performing marginalization after the newest state comes, and
the system is then updated (step 1 in front marginalization).
Also by marginalization, we ensure that the time period for
each IMU preintegration is bounded in order to bound the
accumulated error in the IMU measurements.

F. Optimization

Based on the residual function defined in (6) and (14),
we operate on the error state and optimize (3) using the

Gaussian-Newton method, which iteratively minimizes

min
δX

(bp −ΛpX) +
∑
k∈Si

||rSi
(ẑkk+1,X) + Hk

k+1δX||2Pk
k+1

(17)

+
∑

(i,j)∈Sc

||rSc
(ẑji ,X) + Hj

i δX||
2
Pj

i

and then updates

X̂ = X̂ ⊕ δX (18)

until convergence. The Jacobian matrices are

Hk
k+1 = [

∂rSi(ẑ
k
k+1,X)

∂δxk

∂rSc(ẑkk+1,X)

∂δxk+1
] (19)

∂rSi
(ẑkk+1,X)

∂δxk
=

−Rk
0 −∆tI

⌊
Rk

0d1×
⌋

0 −I
⌊
Rk

0d2×
⌋

0 0 −Rk+1
0 R0

k

 (20)

∂rSc
(ẑkk+1,X)

∂δxk+1
=

Rk
0 0 0

0 Rk
0R0

k+1 −Rk
0R0

k+1

⌊
vk+1×

⌋
0 0 I


(21)

Hj
i = [

∂rSc
(ẑji ,X)

∂δxi

∂rSc
(ẑji ,X)

∂δxj
] (22)

=

−Rj
0 0 0 Rj

0 0
⌊
Rj

0(p0
j − p0

i)×
⌋

0 0 0 0 0 0
0 0 I 0 0 −Ri

0R
0
j

 , (23)

where d1 = (p0
k+1 − p0

k + g0 ∆t2

2) and d2 = R0
k+1v

k+1 +
g0∆t.

Fig. 3. The VI-Sensor from Skybotix with an 11 cm stereo baseline.

V. EXPERIMENTS

All experiments are conducted with a VI-Sensor [21],
which consists of an IMU and two global shutter cameras
with a fronto-parallel stereo configuration, as shown in Fig. 3.
The frequencies of the IMU data and stereo camera data are
200 Hz and 25 Hz respectively. The cameras have factory
pre-calibrated intrinsics and extrinsics. The finest resolution
for dense tracking is 320×240 and the number of levels of
the pyramid is 3. The noticeable gradient threshold of the

dense tracking is 5 and the sliding window size is 30. All
the experiments are run on a commodity Lenovo laptop Y510
with an i7-4720HQ CPU and 8 G of RAM.

We highlight the time required for each step in our
proposed method in Table I. The block matching algorithm
we use is the simplest and fastest one in OpenCV (Stereo
BM). We have found that our approach is not very sensitive
to depth error, and our proposed method can run up to 30 Hz
if the device can support higher data frequency.

Dense Tracking Thread Average Computation Time
Tracking 13 ms

Block Matching 5 ms
Total 18 ms

Optimization Thread Average Computation Time
Graph Optimization 5 ms

Marginalization 3 ms
Loop Closure 18 ms

Total 26 ms

TABLE I
AVERAGE COMPUTATION TIME OF DENSE TRACKING THREAD AND

OPTIMIZATION THREAD

A. Performance in large-scale environments

We test our proposed method in a large-scale environment
and compare it with the performance of Google Tango.
Results are shown in Fig. 4. Google Tango is tied rigidly
with our device in this experiment. The total travel distance is
approximately 220 meters and there are vibrations caused by
hand movement during the testing. The angular rate is shown
in Fig. 5. The final position drift for our proposed method is
about 0.45 meters, while for Google Tango it is about 3.38
meters. The main position drift of the Google Tango estimate
comes from orientation error. For translational motions, both
our approach and Google Tango exhibit similar performance.
However, for large and fast rotation which causes obvi-
ous image blur, our proposed method achieves significantly
higher orientation precision compared to Google Tango. The
maximum angular rate is about 140 degrees per second, as
reported by IMU measurements.

Note that in this experiment, though dense tracking is
robust, it occasionally provides wrong estimations (blue
dashed boxes in Fig. 4). However, our local loop closure and
failure rejection mechanism (Sect. IV-D) ensures successful
recovery from failures.

B. Tracking of Aggressive Motions

This experiment is conducted in an office, with aggressive
motions performed for 80 seconds. Ground truth data from
the OptiTrack Flex 13 system is available in this experiment.
Fig. 7 shows the detailed comparison of orientation, transla-
tion and velocity. The performance statistics are summarized
in Table II. The maximum angular velocity is obtained from
the IMU instantaneous measurement and the maximum linear

Fig. 4. We compare our proposed method with Google Tango in a large
scale environment. Dashed boxes indicates failures in dense tracking.

0 20 40 60 80 100 120 140
−150

−100

−50

0

50

100

150

Time (sec)

R
at

e
(d

eg
re

e/
se

co
nd

)

Roll
Pitch
Yaw

Fig. 5. The angular rate reported by the IMU during the experiment shown
in Fig. 4.

velocity is reported by the OptiTrack system. Note that
1000 degrees/s is also the maximum angular velocity rate
for the VI-sensor.

During the time interval between 20 and 37 seconds, po-
sition drift caused by tracking failure is observed. However,
this drift is then eliminated by loop closure.

It can be clearly seen that the estimates from our proposed
method nicely fit the ground truth data. More details about
the test sequence can be found in the following video:
http://1drv.ms/1Hv2l8d

Duration 80 s
Maximum Angular Velocity 1000 degrees/s
Maximum Linear Velocity 4 m/s

Position-x Drift 0.0336 m
Position-y Drift 0.0814 m
Position-z Drift 0.0469 m

Velocity-x Standard Derivation 0.0264 m/s
Velocity-y Standard Derivation 0.0255 m/s
Velocity-z Standard Derivation 0.0250 m/s

Yaw Drift 1.5080 degrees
Roll Standard Deviation 0.3357 degrees
Pitch Standard Deviation 0.3595 degrees

TABLE II
PERFORMANCE STATISTICS OF OUR PROPOSED METHOD DURING

AGGRESSIVE MOTIONS. DETAILED PLOTS ARE SHOWN IN FIG. 7.

C. Throw It!

We conclude by presenting the third experiment, in which
we throw the VI-Sensor while walking. To the best of our
knowledge, this is the toughest testing for a visual-inertial
estimator that has ever been reported. The total walking

http://1drv.ms/1Hv2l8d

Fig. 6. We throw the VI-sensor while walking. The total walking distance is about 50 meters and the final position drift is about 1.5 meters. There are
8 occurances of throwing in total. The path consists of three kinds of color segments, which indicate 1) Red: good dense tracking without adding new
keyframes; 2) Green: good dense tracking but new keyframes are added; and 3) Yellow: dense tracking failure. In all cases, our local loop closure is able
to largely eliminate drifts after throwing (Sect. IV-D). A video of the experiment can be found at: http://1drv.ms/1Hv2l8d

distance is about 50 meters and the final position drift is
about 1.5 meters. We throw the VI-Sensor eight times as
shown in Fig. 6. The trajectory contains three different
color segments corresponding to the three situations of the
system. The first situation (red segments) is that the current
keyframe-to-frame dense tracking is good and the current
frame is near to the latest keyframe (front marginalization
is applied). The second situation (green segments) is that
the current keyframe-to-frame dense tracking is good but
the current frame is far (in terms of either translation or
rotation) from the latest keyframe. In such a case, the current
frame is fixed as a new keyframe and back marginalization
is applied. The last situation (yellow segments) is that the
current keyframe-to-frame dense tracking is bad and there
are only inertial links between consecutive states. In such a
case, the current frame is fixed as a new keyframe and back
marginalization is applied.

From this extremely challenging experiment, we can see
that while dense tracking is robust and able to handle fast
motion, it is still subject to failure when motions become

more and more aggressive. Inertial measurement from the
IMU is the last resort in this case, and it provides crucial links
between consecutive states to ensure continuous operation of
the estimator. In all cases, our local loop closure is able to
largely eliminate drifts after throwing (Sect. IV-D).

VI. CONCLUSION AND FUTURE WORK

We have proposed real-time dense visual-inertial odometry
that is able to handle aggressive motions. Our proposed
method benefits from recent advances in direct dense track-
ing, IMU preintegration, and graph-based optimization. The
multi-thread framework enables a fast and stable estimate
using only the CPU of an off-the-shelf laptop. Online exper-
iments have verified the performance of the visual-inertial
odometry even with extremely challenging motions.

In the future, we will integrate our proposed visual-inertial
odometry into real applications, such as autonomous flight of
unmanned aerial vehicles (UAV) or augmented reality (AR),
whose performances are still unsatisfactory and unstable
during challenging motions using existing algorithms.

http://1drv.ms/1Hv2l8d

10 20 30 40 50 60 70 80

−2

0

2

Time (sec)

R
ol

l (
ra

d)

10 20 30 40 50 60 70 80

−2

0

2

Time (sec)

P
itc

h
(r

ad
)

10 20 30 40 50 60 70 80
−1

0

1

Time (sec)

Y
aw

 (
ra

d)

Gound Truth
Estimated

(a) Orientation

10 20 30 40 50 60 70 80
−0.6
−0.4
−0.2

0
0.2

Time (sec)

X
 (

m
)

10 20 30 40 50 60 70 80
−0.2

0
0.2
0.4
0.6

Time (sec)

Y
 (

m
)

10 20 30 40 50 60 70 80

0.5

1

Time (sec)

Z
 (

m
)

Gound Truth
Estimated

(b) Position

10 20 30 40 50 60 70 80
−5

0

5

Time (sec)

V
x

(m
/s

)

10 20 30 40 50 60 70 80
−5

0

5

Time (sec)

V
y

(m
/s

)

10 20 30 40 50 60 70 80
−5

0

5

Time (sec)

V
z

(m
/s

)

Gound Truth
Estimated

(c) Velocity

Fig. 7. Performance of our proposed method compared with ground truth
obtained by OptiTrack. (a)Orientation. (b)Position. (c)Velocity.

REFERENCES

[1] M. Li and A. Mourikis, “High-precision, consistent EKF-based visual-
inertial odometry,” Intl. J. Robot. Research, vol. 32, no. 6, pp. 690–711,
May 2013.

[2] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Con-
sistency analysis and improvement of vision-aided inertial navigation,”
IEEE Trans. Robot., vol. 30, no. 1, pp. 158–176, Feb. 2014.

[3] S. Shen, N. Michael, and V. Kumar, “Tightly-coupled monocular
visual-inertial fusion for autonomous flight of rotorcraft MAVs,” in
Proc. of the IEEE Intl. Conf. on Robot. and Autom., Seattle, WA,
May 2015.

[4] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “DTAM: dense
tracking and mapping in real-time,” in IEEE International Conference
on Computer Vision, 2011, pp. 2320–2327.

[5] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision
(ECCV), September 2014.

[6] J. Shi and C. Tomasi, “Good features to track,” in Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition, Seattle, WA, June 1994,
pp. 593–600.

[7] D. Scaramuzza and F. Fraundorfer, “Visual Odometry: Part I - The
First 30 Years and Fundamentals,” IEEE Robot. Autom. Mag., vol. 18,
2011.

[8] D. Scaramuzza, M. Achtelik, L. Doitsidis, F. Fraundorfer, E. Kos-
matopoulos, A. Martinelli, M. Achtelik, M. Chli, S. Chatzichristofis,
L. Kneip, D. Gurdan, L. Heng, G. Lee, S. Lynen, L. Meier, M. Polle-
feys, A. Renzaglia, R. Siegwart, J. Stumpf, P. Tanskanen, C. Troiani,
and S. Weiss, “Vision-controlled micro flying robots: from system
design to autonomous navigation and mapping in GPS-denied envi-
ronments,” IEEE Robot. Autom. Mag., vol. 21, no. 3, 2014.

[9] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based
state estimation and trajectory control towards high-speed flight with
a quadrotor,” in Proc. of Robot.: Sci. and Syst., Berlin, Germany, 2013.

[10] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and
R. Siegwart, “Keyframe-based visual-inertial SLAM using nonlinear
optimization,” in Proc. of Robot.: Sci. and Syst., Berlin, Germany, June
2013.

[11] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an RGB-D camera,” in Proc. of the Intl. Sym. of Robot. Research,
Flagstaff, AZ, Aug. 2011.

[12] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[13] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for
a monocular camera,” in Proc. of the IEEE Intl. Conf. Comput. Vis.,
Sydney, Australia, December 2013.

[14] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for
rgb-d cameras,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.,
May 2013.

[15] A. I. Comport, E. Malis, and P. Rives, “Real-time quadrifocal visual
odometry,” in Intl. J. Robot. Research, 2010.

[16] S. Omari, M. Bloesch, P. Gohl, and R. Siegwart, “Dense visual-inertial
navigation system for mobile robots,” in Proc. of the IEEE Intl. Conf.
on Robot. and Autom., 2015.

[17] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions,”
IEEE Trans. Robot., vol. 28, no. 1, pp. 61–76, Feb. 2012.

[18] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Initialization-free
monocular visual-inertial estimation with application to autonomous
MAVs,” in Proc. of the Intl. Sym. on Exp. Robot., Marrakech, Morocco,
2014.

[19] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-
d vision: from images to geometric models. Springer Science &
Business Media, 2012, vol. 26.

[20] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with
application to planetary landing,” J. Field Robot., vol. 27, no. 5, Sept.
2010.

[21] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in Proc. of the IEEE
Intl. Conf. on Robot. and Autom., 2014, pp. 431–437.

	Introduction
	Related Work
	System Overview
	Dense Visual-Inertial Fusion
	Problem Formulation
	IMU Preintegration
	Dense Tracking
	Dense Tracking-based Local Loop Closure and Tracking Failure Detection
	Two-way Marginalization
	Optimization

	Experiments
	Performance in large-scale environments
	Tracking of Aggressive Motions
	Throw It!

	Conclusion and Future Work
	References

