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Abstract— Autonomous navigation, which consists of a sys-
tematic integration of localization, mapping, motion planning
and control, is the core capability of mobile robotic systems.
However, most research considers only isolated technical mod-
ules. There exist significant gaps between maps generated by
SLAM algorithms and maps required for motion planning. This
paper presents a complete online system that consists in three
modules: incremental SLAM, real-time dense mapping, and
free space extraction. The obtained free-space volume (i.e. a
tessellation of tetrahedra) can be served as regular geometric
constraints for motion planning. Our system runs in real-
time thanks to the engineering decisions proposed to increase
the system efficiency. We conduct extensive experiments on
the KITTI dataset to demonstrate the run-time performance.
Qualitative and quantitative results on mapping accuracy are
also shown. For the benefit of the community, we make the
source code public.

I. INTRODUCTION

Dense 3D maps are fundamental components of au-
tonomous robotic navigation as they serve as the perception
input for path planning, mobile manipulation, traversability
analysis, exploration, etc. In contrast to fine-grained 3D
reconstruction methods which aim to recover detailed surface
structures [1], autonomous navigation requires 3D maps
that are scalable to large-scale environments and can be
reconstructed incrementally in real-time. Traditionally, such
dense 3D navigational maps are built in two stages. The first
step is to estimate poses of sensors (such as cameras and laser
scanners) together with positions of sparse features/semi-
dense textures using SLAM algorithms [2]–[4]. The second
step is to create some form of volumetric dense maps by
projecting 3D points/range scans/disparity maps onto the
correct global poses. Popular map representations include
occupancy grid [5], OctoMap [6, 7], elevation maps [8, 9],
or representations directly from the point cloud [10, 11]. In
this way, the dense 3D map is conditioned on the optimized
sensor poses from SLAM. As the robot acquires more
sensory measurements, robot poses and sparse features are
continuously refined by SLAM algorithms. However, the
dense 3D map cannot be updated immediately due to the
computational burden involved in map update operations
such as space (re)allocation and ray-casting. This becomes
particularly problematic when large-scale loop closure is
detected, where the geometric configuration of the whole
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(a) The optimized features and poses.(b) Space subdivision into tetrahedra.

(c) Captured image with multi-level features.

(d) The corresponding view of the recon-
structed dense 3D map.

Fig. 1. An illustration of the 3D map built on the KITTI05 sequence.
(a) Given the optimized sparse features and poses (Sect. II-A), we select
quality features to build the dense 3D map incrementally. (b) A convex hull
and the space subdivision are shown (Sect. II-B). (c) A captured image. (d)
The corresponding view of the dense 3D navigation map is presented. Color
varies according to the height (Sect. II-D). We are able to distinguish the
shape of cars on the road.

SLAM system is changed, and re-generation of the dense
3D map becomes prohibitively expensive.

In many practical robotic systems, a trade-off is made by
only keeping a local dense map for local motion planning
and solving the global navigation problem in a topological
way [12]–[14]. However, this has drawbacks, as previously
generated dense maps are discarded and cannot be reflected
in the current scene even if loop closures are detected. It is
also hard to obtain a topological map that contains connectiv-
ity information for areas that are observed, but not physically
traveled to by the robot. Recently, [15] and [16] are proposed,
where the environment is reconstructed with deformation
graph. Both RGB-D sensors and high performance GPU are
used, which is not practical for robots working in outdoor



environments or with limited computation resources.
It would be beneficial to have a unified dense map rep-

resentation that incorporates all SLAM updates as soon as
they become available. Moreover, to plan smooth trajectories,
path planning algorithms prefer temporally consistent maps.
Traditional stereo matching algorithms [17, 18], which only
makes use of spatial correlations between stereo images,
are not ready for temporally consistent maps. Motivated by
the recent development of planning that involves geometric
constrains [19], we find that some light-weight mapping
approaches [20]–[25] developed in the graphics society have
potentials for real time dense map generation and motion
planning in large-scale environments. These algorithms build
a 3D model from a sparse point cloud using 3D Delaunay
triangulation and then figure out which part of it is empty or
occupied using visibility constraints. Delaunay triangulation
is powerful for its property [26]: the circumscribing sphere
of tetrahedron dose not contain a vertex in its interior, which
avoids degenerate shapes; the more the points are dense the
more the model are fine. However, for real applications using
Delaunay triangulation and visibility constraints, there are
challenges ahead. Firstly, most of the developed algorithms
run offline in a batch operation [24, 25], or run incrementally
but assuming cameras poses are fixed or known beforehand
[21]–[23], which is not true for online applications where
cameras poses are not known in advance and are estimated
incrementally (and refined over time). Secondly, except the
work of [20], real-time performance at video frame rate
is not reported. [20] runs online in small limited indoor
environments. As shown in Sect. IV-D, [20] is not able to run
real time in large-scale outdoor environments. Thirdly, loop
closures in large-scale environments are ignored [20]–[25].
There is no chance to correct drifts of the 3D reconstruction.
In additions, environment topology is missing and thus it is
impossible to find shortcuts between locations. Last but not
least, to the best of our knowledge, the whole online system
pipeline, from incremental SLAM to dense 3D reconstruc-
tion, is not presented.

In this work, we build on the main ideas of incremental
free-space carving [20] and the state-of-the-art sparse fea-
ture based SLAM system ORB-SLAM2 [27] to design a
complete mapping approach for robotic applications with the
real-time requirement on a CPU-only setting in large-scale
environments. The main contributions are:

• The system includes all essential modules: tracking,
local bundle adjustment, global optimization with large-
scale loop closures, incremental Delaunay triangulation,
space carving using visibility constraints, and free-space
generation for path planning.

• Increased robustness, efficiency, and usability in large-
scale environments over [20] thanks to the proposed im-
provements on vertexes selection, map update principle,
lazy update scheme, engineering implementations, etc..

• Extensive experiments on the KITTI dataset for perfor-
mance evaluation.

• We release the code as an open-source package avail-
able at: https://github.com/ygling2008/

Fig. 2. The complete system pipeline. It consists of five threads running
simultaneously on a multi-core CPU. The pose tracking thread estimates
camera poses for every frame and decides whether to insert a new keyframe.
If a new keyframe is inserted, the local bundle adjustment thread optimizes
local poses and feature positions. Loop closures detection and the following
global optimization are done in a separate thread. The 3D mapping thread
converts the optimized sparse features into dense volumetric representation.
The free-space volume extraction thread outputs the latest free-space volume
periodically for motion planning usage.

lightweight_mapping.
In this work, we use stereo ORB-SLAM2 [27] as the

visual SLAM module of our system and our system is also
compatible with other SLAM pipelines. The manifold con-
straint and edge features of [21]–[23] can also be integrated
to our proposed system for further mapping improvement.
Our system runs real-time with a commodity laptop CPU.
The online extracted free-space volume, which consists in
regular shapes (i.e. tetrahedra), can be served as the input
for planning algorithms [19].

The rest of the paper is structured as follows. The proposed
framework is presented in Sect. II. Detailed engineering
considerations is discussed in Sect. III. We show the experi-
mental evaluations in Sect. IV. Sect V draws the conclusion
and points out possible future extensions.

II. PROPOSED FRAMEWORK

The framework of our system is shown in Fig. 2. Five
threads run simultaneously to utilize the multi-core archi-
tecture. We follow the same feature-based SLAM pipeline
as ORB-SLAM2 [27] for the pose tracking, local bundle
adjustment, loop closing and global optimization. The 3D
mapping module converts the optimized sparse features into
dense volumetric representation. The free-space volume ex-
traction module outputs free-space volumes for path planning
purpose.

A. Feature-Based SLAM Pipeline

1) Pose Tracking: The pose tracking thread estimates the
latest camera pose and decides whether to insert a new
keyframe or not. FAST corners with ORB descriptors are
extracted from every incoming image. Features are matched
between the current frame and the last keyframe. The latest
pose is then optimized using motion-only bundle adjustment.
If tracking is lost, global relocalization is enabled to relocate
the pose. We follow the criteria in [27] for new keyframe
insertion.



(a) The initial map. (b) Conflicts due to vertex inser-
tion.

(c) Re-triangulation. (d) Carving the empty space.

Fig. 3. A 2D illustration of the mapping process, for simplicity. We subdivide the 3D space into connected tetrahedra (triangulates) with vertexes (green).
Each tetrahedron is associated with an occupancy label denoted as empty (white) or occupied (light orange). (a) An initial space configuration. (b) A
new vertex (dark blue) is inserted. The empty circumsphere property of light blue tetrahedra is broken. (c) The tetrahedra in conflict are deleted and
retriangulated. (d) New visibility constraints related to the newly inserted vertex carve away the concerned tetrahedra.

2) Local Bundle Adjustment: The local bundle adjustment
thread processes new keyframes from the pose tracking
thread and updates the local information of nearby keyframe
poses and features. New feature points are triangulated
once enough feature correspondences among keyframes are
obtained. After the local bundle adjustment, outliers are
detected and removed.

3) Loop Closure Detection and Global Optimization:
The loop closing thread searches possible loops for every
keyframe using a bag-of-word place recognizer. Pose graph
optimization is then applied to correct drift after long-term
operations. We do not perform full bundle adjustment the
same as ORB-SLAM2 because the resulted accuracy gain is
not significant.

B. Dense Mapping for Autonomous Navigation

Given the sparse 3D point cloud optimized by the SLAM
pipeline, the 3D mapping thread subdivides the 3D space
using 3D Delaunay triangulation and then carves away the
space using the visibility constraints. An illustration is shown
in Fig. 3.

3D Delaunay triangulation takes a sparse cloud of 3D
points, P = {p0,p1, ...,pn−1}, sampled on the unknown
surface of the surroundings as input. It computes a set of
tetrahedra, T = {t0, t1, ..., tm−1}, that partition the convex
hull of P. Each vertex of a tetrahedron ti is one of the points
in P. The intersection between two neighboring tetrahedra is
a face (triangle) fi. A label is associated to every tetrahedron
as either empty or occupied to denote the occupancy.

A visibility constraint is defined as the line segment be-
tween a camera center and an optimized feature. Tetrahedra
that have intersections with any visibility constraints will be
marked as empty, as shown in Fig. 4.

The entire 3D space is labeled as occupied in the beginning
and then subdivided with tetrahedra along with the insertion
or deletion of input vertexes. Afterward, visibility constraints
are checked for features observed in different keyframes. By
this way, the 3D map is built incrementally. We list basic
operations needed:

1) Vertex Insertion: Vertexes are inserted as the estimation
processes (Section. II-A.2). If a new vertex is inserted into

Fig. 4. A 2D illustration of a visibility constraint. The segment (red)
between a camera center (blue) and an observed feature point (green)
intersects a tetrahedron (orange). The tetrahedron is marked as empty.

the current 3D Delaunay triangulation, the empty circum-
sphere property will be broken. We first delete all the
tetrahedra that contain the newly inserted vertex in their
circumspheres, for which a hole appears. This hole is then
retriangulated. We need to check whether the newly added
tetrahedra intersect existing visibility constraints afterward.
The procedure is illustrated in Fig. 3 (b, c).

2) Constraint Insertion: The insertions of new feature
points (Sect. II-A.2) and the process of feature matching
(Sect. II-A.1) introduce new visibility constraints. We apply
the method in [28] for fast searching related tetrahedra that
intersect new visibility constraints, and label them as empty.

3) Vertex Deletion: Outlier features may be removed after
local bundle adjustment (Sect. II-A.2). For the vertex deletion
operation, we first delete all the visibility constraints induced
by the vertex to be deleted. The vertex and its incident
tetrahedra are then deleted. A hole is formed and then
retriangulated.

4) Constraint Deletion: Along with vertex deletion, re-
lated visibility constraints are removed. We traverse tetrahe-
dra that intersect with the visibility constraints to be deleted
using Gargallo’s algorithm [28], check whether tetrahedra
intersect other visibility constrains or not. Tetrahedra will be
remained empty if they intersect visibility constraints other
than the one to be deleted, or set to occupied otherwise. This
operation is much faster than the dissociation event in [20],
where all tetrahedra are traversed and checked.

5) Vertex Refinement: As feature positions are re-
estimated after local bundle adjustment (Sect. II-A.2) or
global optimization (Sect. II-A.3). We save the set of visibil-
ity constraints incident to these vertexes and execute vertex
deletion and insertion operations to update the vertexes. We
can not merely move the vertexes; otherwise, the empty
circumsphere property of the tetrahedra may be broken. We



then add back the visibility constraints saved previously to
the 3D map. For efficiency, we propose a lazy update scheme
detailed on Sect. III-F.

6) Constraint Refinement: Apart from feature positions,
poses of the camera are also recomputed after local bundle
adjustment (Sect. II-A.2) or global optimization (Sect. II-
A.3). Visibility constraints related to updated camera poses
and feature positions are removed and then re-inserted to
maintain the up-to-date 3D map. For efficiency, we propose
a lazy update scheme detailed on Sect. III-F.

We summarize the run-time complexity of basic operations
in Table I. Suppose that the number of vertexes in the 3D map
is Nv and the number of tetrahedra is Nt. For each vertex,
there are no than Mc incident visibility constraints, while
for each visibility constraint, there are no more than Mt

intersecting tetrahedra. We make full of tree data structures
for quickly locating the vertexes. In actual cases, Mt and
Mc are small and overall complexity is not high for all the
concerned processing.

Operation Complexity
Vertex Insertion O(logNt)

Constraint Insertion O(Mt)
Vertex Deletion O(McMt)

Constraint Deletion O(Mt)
Vertex Refinement O(McMt)

Constraint Refinement O(Mt)

TABLE I
SUMMARY OF THE OPERATION COMPLEXITY.

C. Loop Closure

When a large loop is detected, pose graph optimization
is applied to get a fast response of the camera poses drift.
During the optimization, both SLAM module (Sect. II-A)
and the mapping (Sect. II-B) runs as usual. These two
modules will be informed once the global optimization is
done. Features locations are updated with the latest camera
poses. Map points and observations are merged if they are
similar in the ORB descriptor space as well as consistent with
the camera transformations. Finally, vertex and constraint
refinement are performed on local vertexes and constraints
to update the 3D model.

D. Free-Space Volume Extraction

A free-space volume of the 3D space is simply the set
of tetrahedra that are empty, and the environment surface
is a set of faces between empty tetrahedra and occupied
tetrahedra. This thread periodically visits tetrahedra and their
faces that are near the latest camera pose, constructs a local
map, which consists of empty tetrahedra as well as local
environment surface, and outputs the local map to the path
planning module.

III. ENGINEERING CONSIDERATIONS

We take careful engineering considerations on the im-
plementations to increase the overall system robustness,
efficiency, and usability.

A. Detecting Features in Multiple Image Scales

We detect corners in multi-scale levels of the image
resolution in the pose tracking thread (Sect.II-A.1), which
not only increases the tracking robustness in textureless
environments, but also helps to model the geometry of the 3D
space. Multi-scale corners represent the depth discontinuity
of the surface, and areas without textures are usually planar
pieces corresponding to faces of tetrahedra. Edges points in
[22, 23] may be included as the future work.

B. Map Update after Local Bundle Adjustment

Unlike the previous work [20]–[25] that updates the 3D
model every Kf frames, we perform map update (Sect. II-B)
only after a keyframe is inserted and local bundle adjustment
is finished, or loops are detected and global optimization
is done. We find that feature positions, as well as camera
poses, are not accurate without local bundle adjustment.
Early integration of new vertexes and constraints leads to
a number of unnecessary refinement operations.

C. Batch Updates

When new vertexes and visibility constraints come along
with new keyframe arrival, we start with vertex insertion
(Sect. II-B.1) for all new vertexes and saving all visibility
constraints to be checked (we do not check in this step),
then perform constrain insertion (Sect. II-B.2) for all new
visibility constraints. Finally, we do the constraint check
needed in the first step. Conversely, adding each pair of
vertex and constraint one by one leads to a number of
redundant constraint check, which slows down the process.

D. Constraint List

As for the constraint deletion (Sect. II-B.4), we have to
check whether tetrahedra intersect the remaining visibility
constrains, which is a very time-consuming step. An alter-
native approach is to associate each tetrahedron with a con-
straint list that records all intersecting visibility constraints.
This constraint list is updated together with the constraint
insertion and deletion operation. Tetrahedra whose constraint
list size are positive will be empty and there is no need for
the additional check as before.

E. Vertex Selection

Some features may not be well-constrained due to insuffi-
cient observations or parallax, we get rid of unnecessary op-
erations by merely updating 3D maps with well-constrained
features and their associated visibility constraints. The used
metric is feature position confidence: Let a feature pi be
observed in k keyframes, with corresponding image coordi-
nates are u1

i , u2
i , ..., uk

i . Rotations and translations of these k
keyframes are R1, R2, ..., Rk and t1, t2, ..., tk respectively.
Suppose the ground truth position of pi is p̃i, and the current
estimate is p̂i. We apply the Gaussian Newton approach
which iteratively solves for ∆pi = p̃i − p̂i such that:

argmin
∆p

k∑
j=1

||π(Rjp̂i + tj)− uj
i + JT

j ∆p||2, (1)



where π(·) is the image 3D-2D projection function and Jj is
the first-order Jacobian of π(Rjp̂i + tj)− uj

i . The solution
to (1) is

∆pi = (JTJ)−1JT r, (2)

where J =


JT

1

JT
2

...
JT
k

 and r =


π(R1p̂i + t1)− u1

i

π(R2p̂i + t2)− u2
i

...
π(Rkp̂i + tk)− uk

i

.

We assume that all the detected corners uk
i are corrupted

by Gaussian noise with zero mean and variance σ2. We
ignore covariances of poses for simplicity. As p̂i, Rj and
tj are constants, the covariance of r is Σr = σ2I. And the
covariance of p̃i is the same as the covariance of ∆pi:

Σ∆pi
= ((JTJ)−1JT )T Σr(JTJ)−1JT (3)

≈ (σ2JTJ)−1. (4)

If the position estimation of pi is under-constrained, the ratio
(denoted as rp) between the smallest and largest eigenvalue
of JTJ is small. We select features with rp > τp (See
Sect. IV-D for details about how τp affects the mapping
performance).

F. Lazy Update of Vertex Refinement and Constraint Refine-
ment

During the experiments, we find that most of the map-
ping time are spend on operations of vertex refinement
and constraint refinement due to the incremental estimation
process (this conforms the complexity Table I). We propose a
lazy update scheme that greatly improve mapping efficiency
subject to little accuracy loss: each vertex has two positions
pold and pnew, where pold denotes the latest position in the
3D model, and pnew denotes the latest position as SLAM
processes. We set pold to be pnew as well as perform vertex
refinement (Sect. II-B.5) if and only if ||pnew−pold||2 > τv;
Similarly, each visibility constraint has four end points e0

old,
e0
new, e1

old and e1
new. We set e0

old to be e0
new, e1

old to be e1
new,

perform constraint refinement (Sect. II-B.6) if and only if
||e0

old−e0
new||2 + ||e1

old−e1
new||2 > τe. From the experiment

(Sect. IV-D), this lazy update scheme works effectively. Our
proposed lazy update scheme is different from [20] that
discards constraint refinement.

IV. EXPERIMENTAL RESULTS

We evaluate our system performance on the large-scale
car-driving KITTI dataset with ground truth poses from GPS
and Velodyne laser scanner data for comparison. Sequences
00, 02, 05, 06, 07 and 09 contain loops that are supposed
to be detected. Our system runs in real time and processes
stereo images at the same frame rate that they are captured
(10 Hz). All the experiments are carried out in a commodity
Lenovo laptop Y510 with an i7-4720HQ CPU (2.4GHz)
and 16G of RAM. We build our system on top of an
open-source sparse feature-based system ORB-SLAM2 [27].
All algorithms are implemented in C++, with ROS as the
interfacing robotics middleware. We set τp = 0.01, τv = 0.5,
τe = 1.0 for all the evaluations except Sect. IV-D. We utilize
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Fig. 5. The computation time of the loop closing thread with respect to
the keyframe index. We encounter three global loop closures.
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Fig. 6. The computation time of the 3D mapping thread with respect to the
keyframe index. If a global loop closure occurs, the computation time will
increase. The computation time is bounded and only related to the number
of sparse features observed in the keyframe neighborhood (Sect. II-C). It
does not grow with respect to the total number of keyframes (Sect. II-B).

the CGAL library for 3D Delaunay triangulation and efficient
access to tetrahedra traversals. 1

A. Run-time Performance

The real-time requirement is a vital aspect of our proposed
system. While most algorithms have focused on accuracy,
the goal of our proposed system is to achieve a good
trade-off between the accuracy and run-time performance.
We use the results obtained from an experiment runs on
the KITTI 05 sequence to illustrate our system processing
time. The KITTI 05 sequence lasts for 276 seconds, with
a long distance in both dimensions and three global loops
detected by our system. The mean processing time for the
pose tracking thread is 20.7 ms with standard deviation 6.9
ms, while the mean processing time for the local bundle
adjustment thread is 166.8 ms with standard deviation 88.6
ms. Since the computation time spent by the loop closing
thread and the 3D mapping thread are highly related to the
occurrence of global loop closure, we plot them in Fig. 5
and Fig. 6. From these two figures, we see that both the
maximum computation time of these two threads are less
than 1000 ms. More importantly, though the computation
time of loop closing thread scales w.r.t. the pose graph size,
the computation time of 3D mapping thread is only related
to the locally observed features. Moreover, the keyframe
insertion frequency is roughly 2-3 Hz; thus both the loop
closing thread and 3D mapping thread are able to process it
in real time. The majority of the computation time spent by
the 3D mapping thread is on constraint insertion and deletion
operations. These operations can be processed in a parallel
way and greatly accelerated using GPUs. We left the GPU
implementation as future work.

Another advantage of our system is the nice property that
the complexity of our free-space volume extraction is linear
with respect to the number of keyframes: The number of
vertexes is linear with respect to the number of keyframes,
while the number of tetrahedra is linear with respect to the

1 http://www.cgal.org/
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Fig. 7. The number of vertexes (left) is linear with respect to the number
of keyframes, and the number of tetrahedra (right) is linear with respect to
the number of keyframes too.
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(a) Global map reconstruction.
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(b) Local map reconstruction.

Fig. 8. (a) The computation time of free-space volume extraction is linear
with respect to the number of keyframes. (b) We can select to only extract
free space related to keyframes nearby current pose. This constructs local
maps. A small disturbance occurs due to the varying system overload.

number of vertexes (Fig. 7). We traverse all the tetrahedra to
get the free-space volume, whose consumption time is linear
with respect to the number of tetrahedra (Fig. 8 (a)). This
nice property indicates that we are able to extract the free-
space volume within a bounded time by visiting tetrahedra
related to the closest Kt (turnable, Kt = 10 in this paper)
neighboring keyframes (Fig. 8 (b)).

B. Qualitative Analysis of Mapping Performance

We present the qualitative results in this section. The
results obtained by testing our system on the KITTI 05 se-
quence are shown in Fig. 1. The optimized features and poses
are plotted in sub-figure (a). These features are detected in
multi-level image pyramids to model the space geometry
(Sect. III-A), as highlighted with green circles in sub-figure
(c) (the relative sizes of the circles denote the relative scales
of corresponding features detected). We ignore features that
are under-constrained (Sect. III-E). The remaining features
serve as vertexes to subdivide the space (Sect. II-B). The
convex hull and separation details can be found in sub-figure
(b). A captured image among the sequence is shown in sub-
figure (c), and its following view is shown in sub-figure (d).
The color varies according to the height of the local envi-
ronment. The green virtual camera represents the estimated
capture camera. From the reconstructed local surface, we see
that our system labels the occupancy (empty or occupied) of
the tetrahedra well, such that it approximates the real scene
structure. For example, we are able to distinguish the cars
on the road in sub-figure (d).

(a) Before global loop closure. (b) After global loop closure.

(c) The captured image with multi-level features.

(d) The estimated trajectory.

Fig. 9. (a) Before global loop closure is encountered, the built map is
disordered due to the significant drift after long-term operations. b) After
global loop closure, we merge and update the local surroundings in real-time
(Sect. II-C). (c) The captured image with multi-level features to model the
geometry (Sect. III-A). (d) The driving car goes back to the origin (shown in
red) and closes a large global loop. There are a few artifacts (see sub-figure
(b)) due to the lack of visibility constraints that carve the empty space.
These artifacts are usually long and thin, and do not make a big difference
on the free-space volume for motion planning. They can be further removed
by using methods in [21]–[23].

We also demonstrate the qualitative results before and after
a global loop closure in Fig. 9. The driving car goes back
to the origin after traveling a long distance (sub-figure (d)).
Significant drift occurs, and thus the built map is disordered
(sub-figure (a)). After the global optimization, we update the
3D map (sub-figure (b)). The captured image with multi-
level features is shown in sub-figure (c). There are a few
artifacts (see sub-figure (b)) due to the lack of visibility
constraints that carve the empty space. These artifacts are
usually long and thin, and do not make a significant dif-
ference on the free-space volume. Most of these artifacts
will be disappeared along with insertion of new vertexes and
visibility constraints. The remaining can be further removed
by integrating methods in [21]–[23]. According to available
computational resources, we can tune the system complexity
by tuning the number of sparse features in the system.
Increasing the number of sparse features helps to reduce
the occurrence of the artifact. This is because the related
tetrahedron will be split into smaller tetrahedra, and more
visibility constraints will be inserted. More results can be
found in the accompanying video.



Sequence

Difference
PCT < 1.5% < 3.0% < 6.0% < 12.0%

KITTI 00 37.7661 50.5732 64.2892 77.4659
KITTI 01 28.2305 40.1803 52.7449 63.1427
KITTI 02 43.1737 56.3444 69.4084 80.7317
KITTI 03 16.6989 29.7078 47.2295 64.3512
KITTI 04 33.5860 45.8266 59.2409 72.5650
KITTI 05 39.4686 51.6673 64.1485 78.1123
KITTI 06 38.4727 51.3787 64.7964 76.3172
KITTI 07 37.9296 49.6814 62.3120 75.1020
KITTI 08 36.5144 47.7206 59.5570 71.0865
KITTI 09 42.0707 54.7159 67.5800 79.0824
KITTI 10 42.3470 55.2040 68.4565 80.3366

TABLE II
DEPTH ACCURACY ON THE KITTI DATASET. WE CALCULATE THE

PERCENTAGE OF PIXELS WITHIN DIFFERENT RANGES PROPORTION TO

THE AVERAGE SCENE DEPTH.

Sequence

Safe Margin
PCT < 1.5% < 3.0% < 6.0% < 12.0%

KITTI 00 80.5224 89.8671 92.4686 94.5498
KITTI 01 68.5774 76.3287 84.0849 89.7499
KITTI 02 84.2877 92.4302 94.6705 96.4235
KITTI 03 82.6347 85.5102 89.1914 92.9539
KITTI 04 82.4458 88.3155 91.3178 93.2261
KITTI 05 78.9738 83.9451 85.8857 88.7400
KITTI 06 77.2445 82.1994 85.1913 91.1199
KITTI 07 80.6444 88.0556 91.2381 94.1015
KITTI 08 80.5850 86.5718 90.8511 92.6113
KITTI 09 82.4873 90.6764 93.6242 95.4036
KITTI 10 86.0530 92.6589 94.4553 96.2711

TABLE III
SAFE DEPTH ACCURACY ON THE KITTI DATASET. WE CALCULATE THE

PERCENTAGE OF PIXELS WITHIN DIFFERENT MARGINS PROPORTION TO

THE AVERAGE SCENE DEPTH.

C. Mapping Accuracy

We compare the accuracy of the built 3D map with the
ground truth Velodyne laser scanner data. This is achieved
by projecting the 3D map and Velodyne laser scanner mea-
surements into the keyframe views and taking the difference
between them. The average scene depth of the captured
images is 15 meters. We enumerate the depth difference
from 1.5% (0.225 meters) to 12% (1.8 meters) of the average
scene depth, and calculate the percentage of depth differences
within the threshold range. Only part of the results is shown
in Table II for simplicity. About 65% of pixel depth are
within a 6% average scene depth difference of the ground
truth depth, while about 75% of pixel depth are within a 12%
average scene depth difference of the ground truth depth.

We define another metric, namely the safe depth percent-
age, to count the portion of depth that is less than the ground
truth depth. Safe margins start from 1.5% average scene
depth (0.225 meters) and end at 12% average scene depth
(1.8 meters). The estimated depth, which is less than the
ground truth depth plus the safe margin, is supposed to be the
safe depth. Part of the results is presented in Table III. The
safe depth percentage is significantly higher than the accu-
racy percentage, which is good for autonomous navigation.
The percentage is about 90% for depth differences within
6% average scene depth while more than 90% for depth

(a) The current image.

(b) The reconstructed depth map.

(c) Visualization of safe and unsafe regions.

Fig. 10. (a) One of the image in the KITTI 05 sequence. Sparse SLAM
features are shown as red dots. (b) The reconstructed depth map by our
algorithm. (c) Visualization of safe and unsafe regions. Ground truth depth
is provided by a Velodyne laser scanner. Pixels without ground truth depth
are marked in gray. Pixels are marked in green if the estimated depth
value is smaller the safe margin (12% of the average scene depth) plus
ground truth depth (“safe”); Pixels are marked in red otherwise (“unsafe”).
We can see the depth of dynamic objects such as moving vehicles cannot
be estimated for the same reason that the dependent SLAM pipeline is
unable to detect dynamic objects. The depth of distant areas is also poorly
estimated. However, we argue that this does not pose a significant threat to
safe navigation.

differences within 12% average scene depth. We visualize
the safe and unsafe regions in Fig. 10. Ground truth depth is
provided by a Velodyne laser scanner. Pixels without ground
truth depth are marked in gray. Pixels are marked in green
if the estimated depth value is smaller the safe margin (12%
of the average scene depth) plus ground truth depth (“safe”);
Pixels are marked in red otherwise (“unsafe”). We can see
the depth of dynamic objects such as moving vehicles cannot
be estimated for the same reason that the dependent SLAM
pipeline is unable to detect dynamic objects. The depth of
distant areas is also poorly estimated. However, we argue that
this does not pose a significant threat to safe navigation. As
the system processes, more and more sparse features will be
detected and included in the reconstructed map, which turns
the “unsafe” regions into “safe” regions.

D. Improvements Compared to the Free-Space Carving [20]

We compared the proposed system with the state-of-the-art
real-time system [20] to show the effectiveness and efficiency
of our presented engineering considerations (Sect. III). For
all the testing, we set τe = 2 ∗ τv for simplicity. The KITTI
05 sequence is used. The evaluation is conducted in one
thread. Average map update time after keyframe insertion,
difference PCT at 12% average scene depth, and safe margin
PCT at 12% average scene depth are used for evaluation.
Same vertexes and visibility constraints are used for all
experiments. Table IV summarizes the results. Test 0 is the
baseline method [20], we find that this method can not run in
real-time at large scale environments where lots of vertexes
and visibility constraints are involved (plus potential outliers
and refinements). In Test 1, only improvements presented in



Test τp τv
Time
(ms)

Difference
PCT
(< 12%)

Safe Mar-
gin PCT
(< 12%)

0 - - 2478.6 79.9689 88.9376
1 0 0 697.1 78.8697 88.3034
2 0.005 0 683.0 79.1632 88.5590
3 0.01 0 570.7 78.8599 88.5630
4 0.02 0 424.2 72.7353 82.1562
5 0.04 0 102.6 58.6319 68.5692
6 0.01 0.1 383.6 78.7819 88.5630
7 0.01 0.5 309.8 78.1123 88.7400
8 0.01 1 285.8 69.5595 78.7316
9 0.01 5 270.1 65.0463 75.7322

TABLE IV
IMPROVEMENTS COMPARED TO FREE-SPACE CARVING [20] (TEST 0)

ON KITTI 05.

(Sect. II-B.4, Sect. III-C and Sect. III-D) are applied, result-
ing in a significant gain on the mapping efficiency. In addi-
tion to engineering considerations in Sect. II-B.4, Sect. III-
C and Sect. III-D, we apply vertex selection (Sect. III-E)
and lazy update scheme (Sect. III-F) in Test 2-9. Test 2-
5 show how vertex selection affects the efficiency against
mapping accuracy. As expected, a tighter vertex selection
criteria leads to fewer vertexes in Delaunay triangulation and
visibility constrains, which reduces the computation time at
cost of less mapping accuracy. We fix τp = 0.01 for Test
6-9. The lazy update scheme does not affect the mapping
accuracy if τv small than a certain threshold (let say 0.5), this
is because of the sparse nature of the point cloud. Overall,
setting τp = 0.01 and τv = 0.5 and using all the proposed
engineering considerations have significant gains in mapping
efficiency subject to little accuracy loss compared to the
baseline state-of-the-art real-time method [20].

V. CONCLUSION AND FUTURE WORK

Motivated by the recent advancement of motion plan-
ning algorithms requiring temporally consistent maps and
geometric constraints, we present a complete system that
includes three needed modules: incremental SLAM, real-
time dense mapping, and free space extraction. Our system
runs real time with a commodity laptop CPU thanks to
the proposed improvements on engineering considerations.
Extensive experiments on the KITTI dataset show the ca-
pability in large-scale environments with balanced run-time
performance, qualitative results and mapping accuracy.

There are potential improvements that could be made in
the future. The first is to further reduce the occurrence of
floating artifacts (see Fig. 9 (b) and the accompanying video)
in the reconstructed maps, and the second is to introduce
more supporting vertexes that may not be sparse SLAM
features (such as edge pixels) to model the space geometry
more accurately. Integration with planning algorithms and
hardware platforms (such as UAV) will be done also.
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