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Abstract— In this work, we address the problem of aggressive
flight of a quadrotor aerial vehicle using cameras and IMUs
as the only sensing modalities. We present a fully integrated
quadrotor system and demonstrate through online experiment
the capability of autonomous flight with linear velocities up
to 4.2m/s, linear accelerations up to 9.6m/s?>, and angular
velocities up to 245.1 degree/s. Central to our approach is a
dense visual-inertial state estimator for reliable tracking of
aggressive motions. An uncertainty-aware direct dense visual
tracking module provides camera pose tracking that takes
inverse depth uncertainty into account and is resistant to
motion blur. Measurements from IMU pre-integration and
multi-constrained dense visual tracking are fused probabilis-
tically using an optimization-based sensor fusion framework.
Extensive statistical analysis and comparison are presented to
verify the performance of the proposed approach. We also
release our code as open-source ROS packages.

I. INTRODUCTION

Autonomous micro aerial vehicles (MAVs) have low-cost
and superior mobility advantages, making them ideal robotic
platforms for a wide range of applications such as aerial pho-
tography, surveillance, and search and rescue. These aerial
robots are able to, in principle, navigate quickly through 3-
D unstructured environments and provide fast response in
hazardous environments that are dangerous or inaccessible
for humans. The ability to achieve high-speed and aggressive
flight is essential in such time-critical missions. However,
there are still significant research and engineering challenges
due to the lack of GPS measurements and potential sensor
failures during fast motions. In particular, reliable state
estimation using lightweight, off-the-shelf sensors is still the
foremost important component for aggressive autonomous
flight. Inspired by our earlier results towards vision-based
high-speed quadrotor flight [1], in this work, we take an-
other step forward using advanced methods in dense visual
tracking and optimization-based sensor fusion to achieve
robust state estimation. We show that, with only off-the-
shelf cameras and IMUs as sensing modalities, we are able
to achieve autonomous flight with linear velocities up to
4.2m/s, linear accelerations up to 9.6m/s2, and angular
velocities up to 245.1 degree/s.

As demonstrated in a wide body of literature, cameras are
the ideal sensor for tracking of slow to moderate motions
using feature-based methods. However, motion blur caused
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by aggressive motions can seriously downgrade feature de-
tection and tracking performance. Recent advances in direct
dense tracking have shown good adaptability to motion blur
or textureless environments [2]-[4]. These methods directly
operate on image intensities and make full use of all the
available information within an image. Bypassing the feature
processing pipeline eliminates some of the issues in feature-
based methods. However, even dense methods are subject to
failure during aggressive motions as images can be severely
blurred. IMUs generate noisy but outlier-free measurements,
making them great for tracking of short-term fast motions.
However, low-cost MEMS IMUs suffer significant drift in
the long term. We believe that combining the complementary
natures of dense visual tracking and IMU measurements
opens up the possibility of reliable tracking of aggressive
motions.

Fig. 1. Our experimental platform is the DJI M100 quadrotor equipped
with an onboard computer (Intel i5-4250U 1.3GHz dual-core CPU) and a
VI-Sensor (forward-facing stereo cameras and a MEMS IMU). The platform
weights 3210g in total.

Fig. 2. Snapshots during aggressive autonomous flight experiment. We
highlight the position of the robot with red circles. The maximum linear
velocity, linear acceleration and angular velocity are 4.2m/s, 9.6 m/s? and
245.1 degree/s respectively.

The key contribution of this work is a robust and
fully integrated real-time solution for aggressive quadrotor
flight. Our method uses the information from a pair of
calibrated stereo cameras and a MEMS IMU and runs
onboard a moderate computer (Fig. 1). The focus of



this work is an optimization-based probabilistic estimation
method that fuses pre-integrated IMU measurements and
multi-constrained relative pose measurements from a depth
uncertainty-aware dense visual tracking module. Our esti-
mator actively searches for multi-constrained dense align-
ments between frames within a sliding window. This loop-
closure-like method enables the estimator to recover from
complete loss of visual tracking and eliminate drift after very
aggressive motions. In addition, we initialize the incremental
rotation for dense tracking using the angular prior from
IMU measurements, which greatly improves the convergence
property during aggressive motions. We release our code
as open-source ROS packages with relevant video demon-
strations. There are available at: https://github.com/
vgling2008/dense_new.

The estimator of our proposed system is an extension of
our preliminary work [4], with improvements in uncertainty-
aware dense tracking and robust graph-based optimization.
We believe that we are the first to introduce a practical
visual-inertial system for aggressive autonomous flight of
quadrotors.

The rest of the paper is structured as follows. In Sect. II,
we review the state-of-the-art scholarly work. An overview
of the system is presented in Sect. III. Details of the system
are discussed in Sect. IV. Implementation details and exper-
imental evaluations are presented in Sect. V. Sect VI draws
the conclusions and points out possible future extensions.

II. RELATED WORK

There has been extensive scholarly work in visual-inertial
state estimation. Visual measurements can be calculated from
different camera configurations, such as monocular [1, 5]-
[8], stereo [9], or RGB-D cameras [10]. The majority of these
approaches rely on detecting and tracking of sparse features
across multiple frames. Though feature-based methods are
well-developed, they depend heavily on image quality and
are subject to failure when cameras undergo aggressive
motions that lead to severe motion blur. With recent advances
in high-performance mobile computing, direct dense methods
have become popular [2, 3, 11]-[13]. By directly minimiz-
ing the photometric intensity error between images, these
methods eliminate the feature processing pipeline, making
them more resistant to image blur, provided that two images
are about equally blurred.

It is straightforward to apply some variations of Kalman
filtering [1, 7, 10] to loosely fuse visual and inertial measure-
ments. The high-level effect of such fusion is the smoothing
of vision-based tracking, and the use of IMUs for short-
term motion prediction when visual tracking fails. In loosely-
coupled methods, visual measurements are usually presented
in the form of relative pose transformations, while leaving
the visual pose tracking as a black box. This leads to lower
computational complexity at the cost of suboptimal results.
Recent developments in visual-inertial fusion indicate that
tightly-coupled methods outperform their loosely-coupled
counterparts in terms of estimation accuracy [5, 6, 8, 9, 14].

But this comes at the cost of higher computational complex-
ity.

While dense methods are well-established in vision-only
settings using RGB-D [11, 13], stereo [15] and monocu-
lar [3, 12] cameras, few visual-inertial fusion approaches
incorporates dense tracking. Most similar to our work is [16],
where dense tracking results are loosely fused with inertial
measurements using an extended Kalman filter. No multi-
constrained measurements or graph-based optimization are
used in [16], thus limiting success in tracking failure recov-
ery. We show through online experiment that our approach
outperforms that in [16] during aggressive motions.

III. SYSTEM OVERVIEW

The pipeline of our proposed system is illustrated in
Fig.3. Six threads run simultaneously, utilizing the multi-
core architecture.

The first thread is the driver thread, which performs basic
operations, such as data acquisition and image rectification.

The dense tracking thread performs keyframe-to-frame
direct dense tracking while taking the pixel disparity noise
into account. The angular prior from integration of gyro-
scope measurements initializes the incremental rotation. This
thread also identifies instantaneous tracking performance,
detects tracking failure and determines whether to add a new
keyframe. A disparity map is computed using the standard
block matching algorithm if a new keyframe is added. The
visual measurements and their corresponding frames are
stored in a frame list buffer for further processing by the
optimization thread (Sect. IV-C).

The optimization thread maintains a sliding window of
states and measurements, and checks the frame list buffer
periodically. If it is not empty, all the frames within the buffer
will be added into the sliding window. If a keyframe is added,
loop-closure detection is performed to find possible visual
connections between keyframes. Graph-optimization is then
applied to find the maximum a posteriori estimate of all the
states within the sliding window using measurements from
IMU pre-integration (Sect. IV-B), multi-constrained relative
pose measurements (Sect. IV-D) and the prior. A two-way
marginalization scheme that selectively removes states is
used in order to both bound the computational complexity,
IMU integration time and maximize the information stored
within the sliding window (Sect. IV-F).

The latest state information after graph-based optimization
is sent to the unscented Kalman filter (UKF)-based smooth-
ing thread, which generates high-rate state estimation for
quadrotor control (Sect. IV-H).

The trajectory generation and control thread (Sect. IV-
I) generates a smooth trajectory once the user specifies
waypoints, maximum velocities and maximum accelerations.
After that, this thread gives commands to the controller.

The controller thread receives commands from the trajec-
tory generation and control thread and state information from
the UKF-based smoothing thread. It then calculates the thrust
and the desired attitude accordingly. Finally, commands are
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Fig. 3. The pipeline of our proposed system. It consists of six modules running in separate threads to ensure real-time availability of state estimates. The
driver thread runs at 200Hz, dense tracking thread runs at 25Hz, optimization thread runs at 25Hz, UKF-based smoothing thread runs at 100Hz, trajectory
control and generation thread runs at 100Hz, and controller thread runs at 50Hz.

sent by the controller to the quadrotor for execution (Sect. IV-
D).

IV. OPTIMIZATION-BASED SENSOR FUSION

We consider (-)* as the camera frame, while taking the
kth image, and (-)® as the instantaneous IMU body frame.
Without loss of generality, we assume that the cameras
and the IMU are aligned. The camera-IMU sensor suite
is rigidly mounted, with intrinsic and extrinsic parameters
calibrated beforehand. ps5¥, vi and Rs¥ are the 3D posi-
tion, velocity and rotation of camera frame Y with respect
to frame X. We also have the corresponding quaternion
(A = [¢us 9y 4=, qu)) representation for rotation. Hamilton
notation is used for quaternions.

Given two time instants that correspond to two images, we
can write the IMU propagation model for position, velocity
and rotation with respect to the first state of the system as
in [17]:

by = B+ RIVAAL— g'A1%/2 4 Rl
vl = REFL (VP + ,Bllzﬂ — RrgAt)
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where At is the interval between two image acquisitions,
and gV is the gravity vector expressed in the first state of the
system. ay,; and B, can be obtained by integrating the
IMU measurements between time instants k£ and k + 1, with
the definition detailed in Sect. IV-B.

A. State Estimation Formulation

We set the position and rotation of the first state to be
zero. The initial velocity and gravity vector can be obtained
using the online initialization method presented in [18]. The
full state vector is defined as

X = [x0,xy, ..., x%]
Py, v, af]
py = [0,0,0], q5 = [0,0,0,1].
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We aim to obtain a maximum a posteriori (MAP) estimate
by minimizing the sum of the Mahalanobis norm of the
weighted visual measurement residuals, inertial measurement
residuals and the prior:

min [, — HpX|[* + Y [lrs, (20, Vlipy, + O)
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where H,, and r, are the prior matrix and prior residual
vector respectively, and S; and S, are the set of inertial and
visual measurements respectively. g, (i’lj 41, &) is the resid-
ual function that measures the residual between the inertial
measurements and X’ with covariance P} 41> and rg (2], X)
is the residual function that measures the reprojection error
between visual measurements and X with covariance P?.
Since visual measurements are subject to failure, we add a
diagonal matrix W to weight the influence of rg, (2], X).

Inertial measurements are obtained by IMU pre-integration
(Sect. IV-B) and visual measurements are obtained by multi-
constrained dense alignments (Sect. IV-D).

B. IMU Pre-integration

In this work, we adopt our proposed IMU preintegration
method [8] in this work, which summarizes IMU mea-
surements in a local frame and gets rid of the need for
re-integration when the linearization point changes. The
integration from IMU measurements between time instants
kand k+1is
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where a’? and w’t are the instantaneous linear acceleration
and angular velocity in the IMU body frame at time ¢

)



respectively. The residual function between the states and
the IMU measurement is defined as

(5aﬁ+1
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The covariance Pz 41 can be calculated by iteratively lin-
earizing the continuous-time dynamics of the error term and
then updating it with discrete-time approximation. Detailed
derivation can be found in [8].

C. Uncertainty-aware Dense Tracking

In the uncertainty-aware dense tracking module, we as-
sume that image brightness is the same for the reference
frame ¢ and tracked frame j, and calculate the rigid-body
transformation, denoted as T/ = {t/, R/} € SE(3), where
tj and RJ are translation and rotation respectively, that
minimizes the intensity differences and takes inverse depth
uncertainty into account:

Tg* = argmln// —5 0X( T/, u, py)du 6)

—hhmﬁ‘@mﬂ+ﬂﬁ (7)

where u is the coordinate of a pixel, pu_ is the inverse depth
of pixel u, o2 is the covariance of §I(T?, u, py), Iy [u] is the
intensity value of pixel u in image k W1th covariance crlzk

7(+) : R® — R? is the projection function that projects a 3-D
point f = [z, y, 2|7 into the image coordinate u = (u,v),
and 7~1(-) is the inverse projection function.

Since the inverse depth map is calculated using the block
matching algorithm, i.e., py = s\, Where Ay is the disparity
of pixel u and s is a scaling constant related to the length of
the stereo baseline and the focus length of the camera, we
model the noise of A\, as zero-mean white Gaussian with
covariance o3 . The covariance of py is

SI(T? u, py) = 1;[u]

o2 =503 . ®)

We assume that the error sources are independent and
approximate o2 with first-order covariance propagation

of 0 0 0
0 of 0 O
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where J,, is the Jacobian of §I(T},
IZ‘, Ij, TZ and Pu-

We adopt the Gauss-Newton approach on the Lie-
manifolds to solve (6), which iteratively re-linearizes (6)
around the current estimate Tf and then performs incremen-
tal update until convergence:

Tf — Tf ® exp(€),

u, p,) with respect to

(10)

where &€ = (0t7,067) € se(3) is the minimum dimension
error state. More details about Lie algebra se(3) and Lie
group SE(3) can be found in [19].

Augmenting (6) with linearization leads to the following
linear system:

JTWJI¢ = JTWr, (11)

where J is a Jacobian matrix formed by stacking Jacobians
of the image intensity differences (6) with respect to &, r is
the corresponding intensity differences vector, and W is a
diagonal matrix that encodes the uncertainty.

In the real implementation, we adopt image pyramids to
increase the convergence region and handle large movements.
Only pixels with noticeable gradients are used, for efficiency
reasons. Moreover, the angular prior from integration of the
IMU instantaneous angular velocity is used for initializing
the incremental rotation.

The visual measurement 2 in (3) is Az = Tj , and the
residual function is defined as

. J J £J
rs. (2], X) = [g;?] ~ 9 Ro(py pj)l oti
i [(a])~

(qj ) q; ]7/yz
where élf is the quaternion representation of f{Z It can be
derived mathematically that the corresponding covariance
P? is the inverse of the Hessian matrix JTWJ at the final
iteration.

(12

D. Multi-constrained Dense Alignments

Uncertainty-aware dense tracking is performed between
the latest keyframe within the sliding window and the
incoming frame once a new frame comes. If the tracking
is successful, a visual measurement and its corresponding
covariance are inserted into the sliding window.

In addition, since significant drift may occur after ag-
gressive motions, we introduce a local loop-closure module
for recovery. Once a new keyframe is added, loop-closure
detection is performed to seek possible visual measurements
between existing keyframes within the sliding window and
the new keyframe using uncertainty-aware dense tracking.
Note that a cross check is adopted to avoid incorrect loop
closure. If the two corresponding estimated rigid-body trans-
formations are consistent, the cross check is successfully
passed.

E. Dense Tracking Failure Detection

Although our proposed uncertainty-aware dense tracking
takes the inverse depth uncertainty into account and increases
the robustness compared to the traditional methods, it still
fails in extreme cases, such as during aggressive motions
within textureless surroundings. Detection of dense tracking
failure is of vital importance to our system. As shown in
Sect. IV-C, covariance matrix (JTWJ)~! tells us about the
dense tracking performance. We consider the dense tracking
to be a failure if the covariance is greater than a certain
threshold. Also, since IMU measurements are reliable in the
short-term, dense tracking is considered to have failed if its
incremental transformation estimation is not consistent with
the prior from the IMU integration.



F. Two-way Marginalization

A two-way marginalization scheme [18] is used to main-
tain a sliding window of states and convert measurements
corresponding to the marginalized states into a prior. Since
the memory and computational resources of our system are
limited, we can only optimize a certain number of states and
visual or inertial measurements for real-time performance
setting. The effectiveness of multi-constrained dense align-
ment and drift elimination depend on whether an older state
is kept within the sliding window. We additionally need to
ensure that the time interval for each IMU preintegration
is bounded in order to bound the accumulated error. By
two-way marginalization, all information of the removed
states is kept and computation complexity is bounded,
which is fundamentally different from traditional keyframe-
based approaches that simply drop non-keyframes. Front
marginalization removes the second newest frame, while
back marginalization removes the oldest keyframe within the
sliding window. In this work, to preserve all the information
(visual and inertial measurements) related to non-keyframes,
we only perform front marginalization after the newest state
comes.

Note that the criterion to select whether to use front or
back marginalization is based on the result from the dense
tracking failure detection module introduced in Sect. IV-E.
The second newest state will be marginalized in the next
round if the dense tracking is good and the second newest
state is near to the current keyframe. Otherwise, the oldest
state will be marginalized. The distance is thresholded by
a weighted combination of translation and rotation between
the latest keyframe and the second newest frame.

G. Optimization with Robust Norm

Based on the residual functions defined in (5) and (12),
we operate on the error state and optimize (3) using the
Gaussian-Newton method, which iteratively minimizes:

: 2 ~k k 2
min- |[r, — H,X|| +> 175, (Zhy1, X) + Hy 10X [By

keS;
(13)
Y s @], X) + HISX(R g
(i,j)ESc
and then updates
X=X@dx (14)

until convergence. H}, | and HY are the Jacobian matrices of
inertial measurements and visual measurements with respect
to the states.

To increase the robustness of our proposed system, Wf
changes in each iteration to further eliminate possible outliers
in dense tracking that pass the failure detection (Sect. IV-E).
W is computed according to the Huber thresholding on the

current estimate:

- J (0 0 2j
(Wj)ul _ ]I3><37 . lf H]R,O(I:)‘7 — pz) _ t7H g ¢
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where (W7 ), is the upper left 3 x 3 matrix of W7, (W),
is the lower right 3 x 3 matrix of W7, I35 is an identity
matrix, and ¢; and ¢, are the given translation and angular
threshold respectively.

H. UKF-based Smoothing

The 25Hz state estimation from the optimization module
alone is not sufficient to control the quadrotor. The flight
controller with a separate IMU streams out measurements at
100 Hz. As a result, we employ an UKF to smooth poses
and velocities at 100 Hz [20]. The inputs to the UKF-based
smoothing thread are absolute poses and velocities with
respect to the zero frame from the optimization module and
the IMU measurements from the flight controller. The states
in the UKF are x = [r,, ¥,b,]T, where ¥ = [¢,0,]7
represents the roll, pitch, and yaw angles of the quadrotor
respectively, by = [ba,,ba,,ba,| T is the accelerometer’s
bias expressed in the body frame, and r and I are the
positions and velocities of the quadrotor respectively.

L. Trajectory Generation

Given a set of expected way-points and the maximum
velocity and acceleration, we would like to generate a smooth
trajectory so that the quadrotor can follow it while moving as
fast as possible. We utilize a polynomial trajectory generation
algorithm [21] that runs onboard.

J. Control

Optimization Thread Control Thread

UKF-based Smoothing Thread

UKF-Based
Smoothing

Fig. 4. Control pipeline.

The controller aims to control the quadrotor to follow
the generated trajectory. Suppose the difference between the
current and expected (denoted with *) position and velocity
is e, =r, —r{, e = 1y — . The force vector for the
controller is:

F = —K,e, — K,e, + mgzw + mi", A7)

where K, and K, are the constants, and zy is the vertical
axis in the world [22]. The state information from the UKF
is used as the feedback of the controller. Fig. 4 shows
the pipeline of the control actions. The outputs from the
optimization thread are vaild odometry (tracking is good),
keyframe odometry (new keyframe inserted) and invalid



odometry (tracking is bad, merely integration from iner-
tial measurements is available). Normally, trajectory control
takes charge. However, if invalid odometry lasts more than
two seconds, urgent control that adjusts the roll and pitch
angle to be zero, yaw angle to be fixed and position height
to be fixed, will be enabled for safety reason.

V. EXPERIMENTS

The experiment platform is the Matrice 100 quadrotor
from DJI' with onboard SDK for execution of control
commands (Fig. 1). Our visual-inertial sensor suite equipped
in the platform is the VI-Sensor?, which consists of a MEMS
IMU and two global shutter cameras with a fronto-parallel
stereo configuration. A high-level computer, NUC from
Intel, with a low-power dual-core CPU i5-4250U running at
1.3GHz and 16GB RAM is used for computing in our pro-
posed system. The operating system installed on Intel NUC
is Ubuntu 14.04. The mass of our platform is 3210g. All the
algorithms are developed in C++, with ROS as the interfacing
robotics middleware. The frequencies of the IMU data and
stereo camera data are 200 Hz and 25Hz respectively. The
cameras have factory pre-calibrated intrinsics and extrinsics.

Component Average Computation Time | Thread
Driver Ims 0
Dense Tracking 13ms 1
Block Matching 8ms 1
Graph Optimization 6ms 2
Two-way Marginalization 3ms 2
Local Loop-closure 30ms 2
UKF-based Smoothing Ims 3
Controller Ims 4
Trajectory Generation 3ms 5
Trajectory Control Ims 5

TABLE I
AVERAGE COMPUTATION TIME OF MAIN TIME-CONSUMING
COMPONENTS OF OUR PROPOSED SYSTEM.

A. Real-time Implementation

To achieve real-time performance, we set the finest resolu-
tion for uncertainty-aware dense tracking to be 320x240 and
the number of pyramid levels to be 3. Our implementation
of dense tracking is built on top of the open-source and
vectorized implementation of [3]. The noticeable gradient
threshold of the uncertainty-aware dense tracking is 5 and
the sliding window size is 30. The block matching algorithm
we use is the simplest and fastest one in OpenCV (Stereo
BM). We empirically find that, though the disparity map is
not great using this native block matching algorithm, the
performance of our tracking module is quite good thanks to
the uncertainty-aware treatment. The computing time of each
component is summarized in Table I.

"https://developer.dji.com/matrice-100/
2http://www.skybotix.com/

B. Performance with Normal Speed Flights

In this experiment, we control the quadrotor to fly at
a speed about 1m/s and compare the estimation accuracy
of our system with a keypoint-based method (fovis [10])
and semi-dense tracking [12]. Since the method in [12]
is for monocular vision, we modify it by initializing the
depth values using stereo block matching when a new key-
frame is inserted instead of generating random ones or using
continuous depth fusion for fair comparison. The total flying
distance is about 80 meters, as shown in Fig. 5. We find that
there is occasionally tracking loss with fovis, and therefore
the final drift is large (thus we do not plot it). The final
position drifts of semi-dense tracking and our system are
0.45m and 0.23m respectively. Since the flying speed is not
fast, both semi-dense tracking and our approach works well
and have good performance. Moreover, our proposed system
fully utilizes the advance of multi-constrained relative pose
measurements and nonlinear optimization, resulting in less
drift.
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Fig. 5. We compare the estimation accuracy of our proposed system with

semi-dense tracking [12] of quadrotor flights at normal speed.

C. Performance with Aggressive Flights

We demonstrate the comprehensive performance of the
proposed system with aggressive motions by generating
expected trajectories (figure-eight and cross pattern) and
having the quadrotor follow them using feedback control
from onboard state estimates. The reason we adopt the
figure-eight and cross pattern is that the quadrotor will have
large linear and angular changes that lead to aggressive mo-
tions when following these two trajectories. The robustness
and smoothness of onboard motion estimation are of vital
importance to this experiment. Snapshots of these flights
are shown in Fig. 2. We compare the real-time estimation
accuracy and robustness between our system and state-of-the-
art methods, such as the keypoint-based method fovis [10],
semi-dense tracking [12] (adapted to be stereo the same as
in the last experiment) and the loosely-coupled dense VINS
dense-EKF [16], and show that our system is the only one
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that is able to handle these challenging cases. Ground truth
data obtained by the OptiTrack Prime 41 system is provided
for comparison.

The trajectories of the ground truth and those from the
different approaches are shown in Fig. 6.(a) and Fig. 7.(a).
The statistics of angular rates, linear velocities and linear
accelerations are shown in Fig. 6.(b) and Fig. 7.(b). The
angular rates are measured by IMU. Linear velocities and
accelerations are calculated by our proposed system. It can
be easily seen from the trajectories that both the methods in
[10] and [12] work poorly during aggressive flight. We give a
detailed visual comparison of angles and positions between
our system, dense-EKF and the ground truth in Fig. 6.(c)
and (d) and Fig. 7.(c) and (d). While the performance of
the method [16] is good with the cross pattern, it is bad
with the figure-eight. Our estimator is the best in terms
of both accuracy and robustness for both trajectories. The
final statistics are summarized in Table II. Our method is
the only approach with observability of roll/pitch and multi-
constrained visual measurements, resulting in least drift.
Also, the optimization-based fusion scheme of our system
provides accurate and smooth trajectories that benefit the
controller.?

Trajectory figure-eight | cross pattern
Maximum Angular Rate (degree/s) 183.9 245.1
Maximum Linear Velocity (m/s) 2.8 4.2
Maximum Linear Acceleration (m/s?) 6.7 9.6
Position-x Drift (m) 0.09 0.07
Position-y Drift (m) 0.03 0.03
Position-z Drift (m) 0.24 0.09
Yaw Dirift (degree) 3.07 0.37

TABLE I
SUMMARY OF OUR SYSTEM COMPARED TO GROUND TRUTH DATA.

Note that there are limits on maximum attitude with the
SDK of the M100. We will test our approach with more
aggressive motions in the future if the platform hardware
improves.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a real-time, robust and fully integrated sys-
tem for quadrotors to fly with aggressive motions. The core
of our system is an optimization-based probabilistic sensor
fusion scheme that provides robust state estimation. Online
experiments verified the superior performance of our system.
In the future, we will integrate obstacle avoidance modules
into our system.

3Since the ground truth data is not good due to limited space and
hardware, we do not include the standard derivation of linear velocities
and roll/pitch in Table II.
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Fig. 6. Performance of our proposed method compared with ground truth
obtained by OptiTrack, fovis [10], semi-dense tracking [12] and dense-EKF
[16]. (a) Estimated trajectory of figure-eight. (b) Statistics of angular rates,
linear velocities and linear accelerations during the flight. (c) Comparison
of angles. (d) Comparison of positions. Ground truth data is not good due
to limited space and hardware.
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