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Abstract We propose a novel edge-based visual-inertial fu-
sion approach to address the problem of tracking aggressive
motions with real-time state estimates. At the front-end, our
system performs edge alignment, which estimates the rel-
ative poses in the distance transform domain with a larger
convergence basin and stronger resistance to changing light-
ing conditions or camera exposures compared to the popu-
lar direct dense tracking. At the back-end, a sliding-window
optimization-based framework is applied to fuse visual and
inertial measurements. We utilize efficient inertial measure-
ment unit (IMU) preintegration and two-way marginaliza-
tion to generate accurate and smooth estimates with limited
computational resources. To increase the robustness of our
proposed system, we propose to perform an edge alignment
self check and IMU-aided external check. Extensive statisti-
cal analysis and comparison are presented to verify the per-
formance of our proposed approach and its usability with
resource-constrained platforms. Comparing to state-of-the-
art point feature-based visual-inertial fusion methods, our
approach achieves better robustness under extreme motions
or low frame rates, at the expense of slightly lower accu-
racy in general scenarios. We release our implementation as
open-source ROS packages.

Keywords Visual-inertial fusion · Edge alignment ·
Tracking of aggressive motions · Visual-inertial odometry

1 Introduction

Real-time, robust, and accurate state estimation is the fore-
most important component for many autonomous robotics

Yonggen Ling · Manohar Kuse · Shaojie Shen
Department of Electronic and Computer Engineering, The Hong Kong
University of Science and Technology, Hong Kong, SAR China.
E-mail: ylingaa@connect.ust.hk, mpkuse@ust.hk, eeshaojie@ust.hk

applications. In particularly, reliable tracking of fast and ag-
gressive motions is essential for popular applications that
involves highly dynamic mobile platforms/devices, such as
aerial robotics and augmented reality 1.

As demonstrated in the literature (Baker and Matthews
(2004)), cameras are the ideal sensors for tracking slow to
moderate motions using feature-based methods under con-
stant lighting conditions and camera exposures. However,
large image displacement caused by fast motions can seri-
ously downgrade the feature tracking performance. Recent
advances in direct dense tracking have shown good adapt-
ability to fast motions (Newcombe et al (2011); Engel et al
(2014); Ling and Shen (2015)). These methods operate on
image intensities, rather than on sparse features, to minimize
the photometric cost function and make full use of all the
available information within an image. Thus they essentially
bypass the feature processing pipeline and eliminate some
of the issues found with feature-based methods. To ensure
high image quality under different lighting conditions, cam-
era auto-exposure is usually employed due to the same phys-
ical location in space being imaged as having different inten-
sities across frames. The photo-consistency assumption be-
hind direct dense tracking is easily proven wrong when the
lighting conditions of the environment change. In contrast
to direct methods, our earlier work on edge alignment (Kuse
and Shen (2016)) uses the distance transform in the en-
ergy formulations and elegantly addresses the lack of photo-
consistency issue. Nevertheless, it fails if the captured im-
ages undergo severe blurring. In contrast to cameras, IMUs
generate noisy but outlier-free measurements, making them
very effective for short-term tracking even under fast mo-
tions. On the flip side, low-cost IMUs suffer significant drift
in the long run. We believe that combining the complemen-
tary nature of edge alignment and IMU measurements opens
up the possibility of reliable tracking of aggressive motions.
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Fig. 1: Snapshots during challenging throw experiment. The
maximum linear velocity is 4m/s and maximum angular ve-
locity is 1000 degree/s. (a) Before sensor suite being thrown.
(b)(c)(d) After sensor suite has been thrown. Our proposed
method gives smooth and robust estimations in this experi-
ment. See Sect. 7.3 for details.

Inspired by our earlier results towards fast motions
(Shen et al (2013); Ling et al (2016); Ling and Shen (2015)),
in this work, we propose a novel approach that fuses comple-
mentary visual and inertial information for aggressive mo-
tion tracking using lightweight and off-the-shelf sensors. In
contrast to existing visual-inertial fusion approaches, we ex-
plicitly address the problems of lighting variations and es-
timator convergence using edge alignment and graph-based
nonlinear optimization. Our method uses information from a
pair of calibrated stereo cameras and a MEMS IMU and runs
onboard a moderate computer. The focus of this work is a
semi-tightly-coupled, probabilistic, optimization-based esti-
mation method that fuses pre-integrated IMU measurements
and multi-constrained relative pose measurements from an
edge alignment module. Our estimator actively searches for
multi-constrained edge alignments between frames within
a sliding window. This loop closure-like method enables
the estimator to recover from complete loss of visual track-
ing and eliminate drifts after very aggressive motions. In
addition, we initialize the incremental rotation for edge
alignment using the angular prior from IMU measurements,
which greatly improves the convergence property during ag-
gressive motions. Extensive statistical analysis and compar-
ison are presented to verify the performance of our pro-
posed approach and its usability with resource-constrained
platforms. Comparing to state-of-the-art point feature-based
visual-inertial fusion methods, our approach achieves bet-
ter robustness under extreme motions or low frame rates,
at the expense of slightly lower accuracy in general sce-

narios. We release our code as open-source ROS packages
with relevant video demonstrations available at https:
//github.com/ygling2008/direct_edge_imu.

The proposed system is an extension of our earlier
papers (Ling et al (2016); Kuse and Shen (2016)), with
improvements on edge alignment, co-estimation of IMU-
camera extrinsics and IMU biases, system integration and
performance evaluation. We believe that this contribution
is an important milestone towards a practical visual-inertial
system for tracking of aggressive motions, which would en-
able applications such as autonomous agile quadrotor flight
and augmented reality. The remainder of the paper is orga-
nized as follows. In Sect. 2, we review the state-of-the-art
scholarly work. An overview of the system is presented in
Sect. 3. Notations are given in Sect. 4. Edge alignment is in-
troduced in Sect. 5. Details of the sensor fusion framework
are discussed in Sect. 6, and Sect. 7 shows implementation
details and experimental evaluations. Finally, Sect. 8 draws
conclusions and points out possible future extensions.

2 Related Work

There has been extensive scholarly work done in relation
to visual odometry, image registration, point cloud regis-
tration, and visual-inertial state estimation. Visual measure-
ments can be calculated from different camera configura-
tions, such as monocular (Shen et al (2015); Hesch et al
(2014); Li and Mourikis (2013); Scaramuzza et al (2014);
Shen et al (2013)), stereo (Leutenegger et al (2015)), or
RGB-D cameras (Huang et al (2011)). The majority of these
approaches rely on detecting and tracking sparse features
across multiple frames. The most well known approach is
called the Kanade-Lucas-Tomasi (KLT) algorithm (Tomasi
and Kanade (1991); Shi and Tomasi (1994)) and uses a
feature detector and a feature tracker that make full use
of spatial intensity information to reduce potential matches
between images. Thus, it is faster than the traditional im-
age alignment methods. Many variants of the KLT algo-
rithm have been developed and some of them are summa-
rized in Baker and Matthews (2004). In Baker and Matthews
(2004), an inverse compositional approach, which greatly
improves the efficiency of the KLT algorithm, is presented.
Other mainstream sparse feature algorithms are based on de-
scriptors, such as FAST (Rosten and Drummond (2006)),
Haris (Harris and Pike (1987)), Shi-Tomasi (Shi and Tomasi
(1994)), SIFT (Lowe (2004)), and SURF (Herbert Bay and
Gool (2008)). Sparse features are firstly detected and de-
scribed, and then matched according to the distance in the
feature descriptor space. Though feature-based methods are
well-developed, they depend heavily on image quality for
feature detection and small image displacement for feature
tracking. They fail when cameras undergo aggressive mo-
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tions that lead to large image movement and severe motion
blur.

With recent advances in high-performance mobile com-
puting, direct dense methods have become popular (Kerl
et al (2013); Newcombe et al (2011); Engel et al (2013,
2014)). Kerl et al (2013) propose a probabilistic formula-
tion of direct dense tracking that is based on student distri-
bution, which alleviates the influence of outliers and leads
to robust estimation. Newcombe et al (2011) present a sys-
tem for real-time camera tracking and reconstruction using
current commodity GPU hardware. Recent work on direct
dense tracking (Engel et al (2013, 2014)) models the uncer-
tainty on the inverse depth of pixels and exhibits amazing
performance towards a large scale environment. However,
these methods rely on the photo-consistency assumption, by
which motion estimation can be done by following the local
gradient directions to minimize the total intensity error. Di-
rect dense methods have a small basin of attraction (as noted
in Kerl et al (2013)) and are sensitive to changing lighting
conditions.

Another way to estimate the states using visual mea-
surements is an iterative closest point (ICP) based method,
which directly aligns three-dimensional point clouds.
Stückler and Behnke (2012) employ a method based on ICP
for the alignment of point clouds obtained from an RGB-
D camera, while Rusinkiewicz and Levoy (2001) present
a survey of other attempts to use efficient ICP-like meth-
ods for pose estimation. A generalized formulation of ICP
is proposed in Segal et al (2005), in which ICP and point-
to-plane ICP are combined into a single probabilistic frame-
work. Fitzgibbon (2003) proposes an algorithm to align two
two-dimensional point sets, and the algorithm is also ex-
tensible to three-dimensional point sets. Fitzgibbon (2003)
uses the distance transform to model the point correspon-
dence function to align two-dimensional curves. Since ICP
relies on three-dimensional points clouds, its applications to
monocular or stereo cameras, which generally give neither
dense nor accurate three-dimensional points, are limited.

To overcome the disadvantages of approaches with vi-
sion only, visual-inertial fusion has recently gained lots of
attentions. It is straightforward to apply some variations of
Kalman filtering (Huang et al (2011); Shen et al (2013);
Scaramuzza et al (2014); Omari et al (2015); Bloesch et al
(2015)) to loosely fuse visual and inertial measurements.
Huang et al (2011) utilizes the information richness of RGB-
D cameras and fuses the visual tracking and inertial mea-
surements in an extended Kalman filter (EKF) framework.
Shen et al (2013) combines the information from a KLT
tracker and IMU measurements with an unscented Kalman
filter (UKF), and Omari et al (2015) leverages the recent de-
velopment of direct dense tracking and fuses it with inertial
information in the EKF fashion. Scaramuzza et al (2014)
also applies EKF in a similar way to Shen et al (2013).

Intensity errors of image patches as well as inverse depth
parametrization are considered in Bloesch et al (2015). The
high-level effect of such fusion is the smoothing of vision-
based tracking. Even when visual tracking fails, the esti-
mation can be done by the use of an IMU for short-term
motion prediction. In loosely-coupled methods, visual mea-
surements are usually presented in the form of relative pose
transformations, while leaving the visual pose tracking as a
black box. This leads to lower computational complexity at
the cost of suboptimal results.

Recent developments in visual-inertial fusion indicates
that tightly-coupled methods outperform their loosely-
coupled counterparts in terms of estimation accuracy (Hesch
et al (2014); Li and Mourikis (2013); Leutenegger et al
(2015); Shen et al (2015); G. Huang, M. Kaess and Leonard
J.J. (2014); Christian et al (2015); Usenko et al (2016)).
Shen et al (2015), Christian et al (2015) and Hesch et al
(2014) propose a scheme of IMU preintegration on the Lie
manifold and then fuse it with monocular camera track-
ing information in a tightly-coupled graph-based optimiza-
tion framework. The inertial measurement integration ap-
proaches in Leutenegger et al (2015), Shen et al (2015) and
Christian et al (2015) are slightly different, with respec-
tive pros and cons. Hesch et al (2014), Li and Mourikis
(2013) and G. Huang, M. Kaess and Leonard J.J. (2014)
put emphasis on the system’s observability and build up the
mathematical foundation of visual-inertial systems. Upon
their analysis, they develop monocular visual-inertial sys-
tems that are high-precision as well as consistent. Besides
this, Hesch et al (2014), Li and Mourikis (2013), Dong-Si
and Mourikis (2012), L. Heng, G. H. Lee, and M. Polle-
feys (2014), and Yang and Shen (2015) relax the assump-
tion that the transformation between the camera and IMU
(cameras extrinsics) is known. IMU-camera extrinsics are
also optimized in their algorithms, which takes a step for-
ward towards practical applications. Instead of geometric er-
rors of sparse features, Usenko et al (2016) propose a direct
visual-inertial odometry that minimizes the intensity errors.
Tightly-coupled methods consider the coupling between two
types of measurements and allows the adoption of a graph
optimization-based framework with the ability to iteratively
re-linearize nonlinear functions. In this way, tightly-coupled
approaches gain the potential to achieve better performance.
On the other hand, these kinds of methods usually come with
a higher computational cost as the number of variables in-
volved in the optimization is large.

3 System Overview

The pipeline of our proposed system is illustrated in Fig. 2.
(Also see Table 1 in Sect. 7.1.) Three threads run simultane-
ously, utilizing the multi-core architecture.
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Fig. 2: The pipeline of our proposed system. It consists of three modules running in separate threads to ensure real-time
availability of state estimates (denoted as three dashed boxes). The driver thread runs at 200 Hz, the edge alignment thread
runs at 25 Hz, and the optimization-based sensor fusion thread runs at 25 Hz.

The first thread is the driver thread, which performs ba-
sic operations, such as data acquisition and image rectifica-
tion.

The edge alignment (Sect. 5) thread performs key-
frame-to-frame edge alignment periodically. Canny edge de-
tection and distance transform are performed for each in-
coming image. The angular prior from the integration of gy-
roscope measurements initializes the incremental rotation.
This thread also identifies instantaneous tracking perfor-
mance, detects tracking failure and determines whether to
add a new keyframe. A disparity map is computed using a
standard block matching algorithm for every new keyframe.
The visual measurements and their corresponding frames
are stored in a frame list buffer for further processing by
the optimization thread.

The optimization-based sensor fusion thread maintains a
sliding window of states and measurements, and checks the
frame list buffer periodically. If it is not empty, all the frames
within the buffer will be added into the sliding window. If a
keyframe is added, loop closure detection is performed to
find possible visual connections between keyframes. Graph-
optimization is then applied to find the maximum a posteri-
ori estimate of all the states within the sliding window using
measurements from IMU pre-integration (Sect. 6.2), multi-
constrained relative pose measurements (Sect. 6.3) and the
prior. A two-way marginalization scheme that selectively re-
moves states is used to bound the computational complexity
and the time interval of the IMU integration and to maximize
the information stored within the sliding window (Sect. 6.5).

4 Notations

We begin by giving notations. We consider (·)w as the
earth’s inertial frame, (·)bk and (·)ck as the IMU body frame

and camera frame while taking the kth image. We assume
that the IMU-camera sensor suite is rigidly mounted, and
the translation and rotation between the left camera and
the IMU are tcb, qcb. The intrinsics of stereo cameras are
calibrated beforehand. pXY , vXY and RX

Y are the 3D posi-
tion, velocity and rotation of camera frame Y with respect
to frame X , respectively. We also have the corresponding
quaternion (qXY = [qx, qy, qz, qw]) representation for rota-
tion. Hamilton notation is used for quaternions. The states
are defined as the combinations of positions, velocities, ro-
tations, linear acceleration biases and angular velocity bi-
ases xk = [pwbk ,v

w
bk
,qwbk ,b

bk
a ,b

bk
ω ]. For camera frame cr

(which denotes the reference frame) and camera frame cn
(which denotes the current frame), the rigid-body transfor-
mation between them is Tn

r = {pcncr ,R
cn
cr } ∈ SE(3), where

pcncr and Rcn
cr are translation and rotation, respectively. Next

we denote a 3D scene point i in the co-ordinate system of
the camera optical center at time instance k by kfi ∈ R3.
The camera projection function Π : R3 7→ R2 projects the
visible 3D scene point onto the image domain. The inverse
projection function Π̃ : (R2, R) 7→ R3 back-projects a
pixel coordinate given the depth at this pixel co-ordinate:

kui = Π(kfi) (1)
kfi = Π̃(kui, Zk(

kui)), (2)

where kui ∈ R2 denotes the image coordinates of the 3D
point kfi, and Zk(ku) denotes the depth of point kfi. We use
a graph structure to represent the variables (states, combina-
tion of poses and velocities) we aim to solve and constraints
(links) between variables. See Fig. 3 for an illustration and
Sect. 6. for details about variables and constraints.
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Fig. 3: Graph representation of variables (xk = [pwbk ,v
w
bk
,qwbk ,b

bk
a ,b

bk
ω ]) and constraints (inertial links, prior links,

keyframe-to-frame links and loop closure links). See Sect. 6 for details about variables and constraints.

5 Edge Alignment

In this section, we introduce our formulation for relative
camera motion estimation, which we refer to as the edge
alignment formulation. It is based on the minimization of
the geometric error term at each edge pixel to obtain an
estimate of the rigid body transform between two frames,
ie., to find a pose (rotation and translation matrix) such
that the edges of the two images align. This is in contrast
to previous direct methods, notably the one proposed by
Kerl et al (2013), which minimizes the photometric error
at every pixel. The energy formulation we propose in
this work is the sum of the squared distances between
transformed-projected (on current frame) co-ordinates of
the edge-pixels from the reference frame and the nearest
edge-pixels in the current frame.

5.1 Formulation

For convenience of notation we derive our energy formula-
tion using R and p as the alias to Rcn

cr and pcncr for a partic-
ular instance of the reference and current frames. Our pro-
posed geometric energy function is the sum of the distances
of the re-projections (of edge points from the reference im-
age) and nearest edge points in the current image:

f(R,p) =
∑
i

min
j
D2
(
Π[R rfi + p], nuj

)
, (3)

where D : (R2,R2) 7→ R denotes the Euclidean distance
between those points. The best estimates for the rigid trans-
form can be obtained by solving the following optimization
problem:

minimize
R,p

f(R,p) (4)

subject to R ∈ SO(3).

We relax the geometric energy function by restricting it
only to edge points. In this approach, we observe that, if the
image points corresponding to edge points in the reference
image (denoted by rei ∈ R2 with corresponding 3D point

rEi) are pre-selected, then the function minj D(ui,uj) is
exactly the definition of the distance transform (Felzen-
szwalb and Huttenlocher (2012)). We denote the distance
transform of the edge-map of the current image as V (n) :

R2 7→ R. Thus, the energy terms for an edge-pixel of the
reference frame are given by

υei(R,p) = V (n)
(
Π[R Π̃(rei, Zr(

rei)) + p)]
)
. (5)

To summarize, the relaxed energy function is

f(R,p) =
∑
∀ei

(υei
(R,p))2 (6)

and our goal is to solve for R∗ and t∗:

argmin
R,p

f(R,p) (7)

subject to R ∈ SO(3).

5.2 Optimization on Lie Group Manifolds

Since (5) is highly nonlinear with respect to R and p, we
linearize it on the Lie group manifolds SE(3) with respect
to ξ = (δp, δθ) ∈ se(3), which is the minimum dimension
error representation,

υei
(R,p, ξ) = υei

(R,p) + Ji|ξ=0 · ξ, (8)

where Ji is the Jacobian matrix of υei
(R,p) with respect

to ξ at ξ = 0. Lie group SE(3) and Lie algebra se(3) can
be linked by an exponential map and logarithm map. More
details can be found in Ma et al (2012).

Unlike in our early work Kuse and Shen (2016), which
provides a strong theoretical guarantee on convergence, we
adopt the Gaussian-Newton method to solve (7). We empir-
ically find that the Gaussian-Newton method works in most
cases and it converges to the local minimum quickly so the
real-time requirement of our proposed system is satisfied. To
get rid of the disturbance caused by convergence, we have
mechanisms to detect and reject failure of edge alignment
(Sect. 5.3 and Sect. 6.4).

Following the scheme of the Gaussian-Newton ap-
proach, we iteratively solve (7) using the linearization (8)
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around the current estimate T̂ = {R̂, p̂} and then perform
incremental updates until convergence:

T̂← T̂⊗ exp(ξ). (9)

Substituting (8) into (7) and then taking the derivative
with respect to ξ and setting it to zero leads to the following
system:

JTJξ = −JTς, (10)

where J is a Jacobian matrix that is formed by stacking Ja-
cobians Ji and ς is the corresponding vector that is formed
by stacking υei

(R,p) together.
As has been observed by Kerl et al (2013), weighting

large residues can help alleviate the effect of outliers aris-
ing due to reflections, occlusions, disocclusions and edge-
map misses. We use the Laplacian weighting term given by
w(υei(ξ)) = e−υei (ξ) and rewrite (10) as a weighted formu-
lation:

JTWJξ = −JTWς, (11)

where W is a diagonal matrix that encodes the Laplacian
weights. Fig. 4 shows the reprojections of edges-pixels as
the Gaussian-Newton optimization progresses.

5.3 Edge Alignments Self Check

The proposed edge alignment abstracts the image as edges
and optimizes a function based on the distance transform for
the relative pose for the key-frame-to-current-frame. This
results in an increased convergence basin and robustness to-
wards changing lighting conditions. Inspite of its robustness,
under certain extreme situations, edge alignment tends to
produce estimates with high uncertainty. This is detrimen-
tal to the overall performance of the system and detection
of such an event is crucial. For example, aggressive mo-
tions can cause severe motion-blur in captured images, the
effect being that the Canny edge detection module results in
temporally inconsistent edges. For another example, when
captured images undergo changing lighting conditions, the
detected edges may also be inconsistent among consecutive
images.

We propose to use the average reprojected distance as
the criterion for the self check and reporting of failures. We
evaluate the value of the cost function (6) at the final itera-
tion (f(R∗,p∗)) divided by the number of edge pixels. An
appropriate threshold is set to detect failure of convergence.

6 Sliding Window-Based Sensor Fusion

Given two time instants that correspond to two images, we
can write the IMU propagation model for position, velocity
and rotation with respect to the earth’s inertial frame:

pwbk+1
= pwbk + vwbk∆t− gw∆t2/2 + Rw

bk
αkk+1

vwbk+1
= vwbk + Rw

bk
βkk+1 − gw∆t

qwk+1 = qwk ⊗ qkk+1,

(12)

where ∆t is the interval between two image acquisitions,
and gw = [0 0 9.8] is the gravity vector in the earth’s iner-
tial frame.αkk+1, βkk+1 and qkk+1 are obtained by integrating
the IMU measurements between time instants k and k + 1,
with the definition detailed in Sect. 6.2.

6.1 State Estimation Formulation

We set the initial position and yaw angle to be zero, and
define the full state vector as:

X = [x0,x1, ...,xN , t
c
b,q

c
b],

where xk = [pwbk ,v
w
bk
,qwbk ,b

bk
a ,b

bk
ω ]. We aim to obtain a

maximum a posteriori (MAP) estimate by minimizing the
sum of the Mahalanobis norm of the weighted visual mea-
surement residuals, inertial measurement residuals and the
prior:

minimize
X

||bp −HpX||2 +
∑
k∈Si

||rSi
(ẑkk+1,X )||2Pk

k+1
+

(13)∑
(i,j)∈Sc

||rSc(ẑ
j
i ,X )||

2
(Wj

i )
−1Pj

i

where Si and Sc are the set of inertial and visual mea-
surements respectively, rSi

(ẑkk+1,X ) is the residual func-
tion that measures the residual between the inertial mea-
surements andX with covariance Pk

k+1, while rSc
(ẑji ,X ) is

the residual function that measures the reprojection error be-
tween the visual measurements and X with covariance Pj

i .
Since visual measurements are subject to failure, we added
a diagonal matrix Wj

i to weight the influence of rSc
(ẑji ,X ).

bp and Hp are the prior of the states, which will be de-
tailed in the two-way marginalization section (Sect. 6.5).
Inertial measurements are obtained by IMU preintegration
(Sect. 6.2) and visual measurements are obtained by multi-
constrained edge alignments (Sect. 6.3).



Edge Alignment-Based Visual-Inertial Fusion for Tracking of Aggressive Motions 7

(a) Reference Image Ir (b) Current Image In

(c) Iteration 0 (d) Iteration 2 (e) Iteration 4 (f) Iteration 6 (g) Iteration 8

(h) Iteration 0 (i) Iteration 2 (j) Iteration 4 (k) Iteration 6 (l) Iteration 8

Fig. 4: Reprojections of edge-pixels in the reference frame onto the current frame as the Gaussian-Newton optimization
progresses. The middle row shows the reprojections on the current gray image. They are false colored to represent υei(ξ).
The last row shows reprojections on the distance transform image of the edge-map of the current frame. Note that the current
frame and the reference frame are about 160 ms apart (5 frames) and the Gaussian-Newton method progress is shown without
pyramids, with the initial guess as the identity. Viewing in color is recommended.

6.2 IMU Preintegration

We adopt the IMU preintegration approach proposed in
Yang and Shen (2016). The linear acceleration abt and an-
gular velocity ωbt at time t are modeled as

abt = abt
∗
+ bbta + nbta (14)

ωbt = ωbt
∗
+ bbtω + nbtω (15)

where abt
∗ and ωbt∗ are true values, bbta and bbtω are slowly

varying biases which are modeled as Gaussian random
walks, and nbta and nbtω are additive Gaussian white noises.

The integration from IMU measurements between time
instants k and k + 1 is

ẑkk+1 =

α̂
k
k+1

β̂
k

k+1

q̂kk+1

 =


∫∫
t∈[k,k+1]

Rk
t a
btdt2∫

t∈[k,k+1]
Rk
t a
btdt∫

t∈[k,k+1]
1
2

[
−
⌊
ωbt×

⌋
ωbt

−ωbtT 0

]
qkt dt

 .
(16)

The residual function between the states and the IMU inte-
gration is defined as

rSi(ẑ
k
k+1,X ) =


δαkk+1

δβkk+1

δθkk+1

δbbka
δbbkω



=


Rbk
w (pwbk+1

− pwbk − vwbk∆t+ gw ∆t
2

2 )− α̂kk+1

Rbk
w (vwbk+1

− vwbk + gw∆t)− β̂
k

k+1

2[(q̂kk+1)
−1(qwbk)

−1qwbk+1
]xyz

b
bk+1
a − bbka

b
bk+1
ω − bbkω

 .
(17)

The covariance Pk
k+1 can be calculated by iteratively

linearizing the continuous-time dynamics of the error term
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and then updating it with discrete-time approximation:

Pk
t+δt =(I+ Ftδt) ·Pk

t · (I+ Ftδt)
T

+ (I+ Gtδt) ·Qt · (I+ Gtδt)
T, (18)

with the initial condition Pk
k = 0. Ft and Gt are the

state transition Jacobians with respect to the states and the
IMU measurement noise, respectively. Detailed derivations
can be found in Yang and Shen (2016). IMU preintegration
forms constraints between consecutive state variables (iner-
tial links in the graph model, see Fig. 3).

6.3 Multi-constrained Edge Alignments

Edge alignment (Sect. 5) is performed between the latest
keyframe within the sliding window and the latest incom-
ing frame (also referred to as the current frame). The re-
sultant visual measurements are named key-frame-to-frame
links in the graph model (Fig. 3). In addition, since signif-
icant drifts may occur after aggressive motions, we intro-
duce a local loop closure module for recovery. Once a new
keyframe is added, loop closure detection is performed to
seek possible visual measurements between existing key-
frames within the sliding window and the new keyframe us-
ing edge alignment. Note that the cross check is adopted to
avoid wrong loop closure. If and only if the two correspond-
ing estimated rigid-body transformations are consistent, the
cross check is passed. The outputs from the loop closure de-
tection module are denoted as loop closure links in the graph
model (Fig. 3).

Suppose the visual measurement between reference
frame i and aligned frame j obtained from edge alignment
is ẑji = Tj

i

∗
. The residual function is defined as

rSc(ẑ
j
i ,X ) =

[
δpji
δθji

]
=

[
R
bj
w (pwbi − pwbj )−Rb

c(R
cj
ci t

c
b + p̂

cj
ci )− tbc

2[(qcbq̂
cj
ci q

c
b)
−1(qwbj )

−1qwbi ]xyz

]
,

(19)

where q̂ji is the quaternion representation of R̂j
i , and vice

versa. It can be derived mathematically that the correspond-
ing covariance Pj

i is the inverse of the Hessian matrix
JTWJ at the final Gaussian-Newton iteration.

6.4 IMU-aided External Check

Since the IMUs provide noisy but outlier-free measure-
ments, the estimation using IMU preintegration is short-
term reliable. Moreover, though we can tune the related pa-
rameters so that the edge alignment exhibits good perfor-
mance, it fails as the surroundings are complicated and un-
known in advance. Additionally, tuning the parameters is

not an easy job as different external conditions may result
in different parameter settings. We propose to use the IMU
preintegration to threshold the performance of instantaneous
edge alignment. The characteristics of an IMU can be eas-
ily calculated offline and are supposed to be known prior
to the starting of the system. We can detect possible false
edge alignment according to the difference between the IMU
preintegration and edge alignment estimate. We ignore the
visual measurements from edge alignment if they are not
consistent with the IMU preintegation (both for the rotation
and translation estimation). An IMU-aided external check is
a vitally important step towards a practical and robust sys-
tem.

We declare edge alignment estimates as failures if either
of the criteria (Sect. 5.3 and Sect. 6.4) fail.

6.5 Two-way Marginalization

Due to the limited memory and computational resources of
the system, we can only maintain a certain number of states
and measurements within the sliding window. We convert
states that carry less information into priors {Λp,bp} by
marginalization, where Λp = HT

p Hp. Note that the ef-
fectiveness of loop closure (Sect. 6.3) and drift elimination
depends on whether an older state is kept within the slid-
ing window. For this reason, unlike traditional approaches,
which only marginalize old states, we use the two-way
marginalization scheme that was first introduced in our ear-
lier work, Shen et al (2014), to selectively remove old or
more recent states in order to enlarge the covered regions of
the sliding window.

Fig. 5 illustrates the process of our two-way marginal-
ization. Front marginalization removes the second newest
state, while back marginalization removes the oldest state.
Blue circles represent key states, green circles represent the
states to be marginalized and brown circles represent the
incoming states. The relation between states and frames is
that states include poses and velocities, while frames include
poses and images. Each frame has its corresponding state
and vice versa. States are linked by IMU preintegration (in-
ertial link), incremental edge alignment (tracking link), loop
closure (loop closure link) and the prior (prior link). To per-
form front marginalization, the second newest state is first
linked with the incoming state (step 1) and then marginal-
ized out (step 2). For back marginalization, the oldest state
is simply marginalized out (steps 1-2). After marginaliza-
tion, the third step decides which state is to be marginalized
in the next round (front marginalization or back marginal-
ization). Mathematically, to marginalize a specific state, we
remove all links related to it and then add the removed links
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Fig. 5: The process of our two-way marginalization, which marginalizes all the available information (motion estimates from
edge alignment, inertial measurement, loop closure relation and prior) into a new prior and maintains bounded computational
complexity. Front marginalization marginalizes the second newest state, while back marginalization marginalizes the oldest
state within the sliding window.

into a prior:

Λp = Λp +
∑
k∈S−

i

(Hk
k+1)

T(Pk
k+1)

−1Hk
k+1

+
∑

(i,k)∈S−
c

(Hk
i )

T(Pk
i )
−1Hk

i (20)

bp = bp +
∑
k∈Si

−

(Hk
k+1)

T(Pk
k+1)

−1rSi
(ẑkk+1,X )

+
∑

(i,k)∈Sc
−

(Hk
i )

T(Pk
i )
−1rSc

(ẑji ,X ), (21)

where S−i and Sc− are the set of removed IMU preintegra-
tion measurements and visual measurements, respectively.
The prior is then marginalized via the Schur complement
(Sibley et al (2010)).

The criteria to select whether to use front or back
marginalization are based on the edge alignment perfor-
mance. If the edge alignment is good and the second newest
state is near to the current keyframe, the second newest state
will be marginalized in the next round. Otherwise, the oldest
state will be marginalized if it fails.

Note that our two-way marginalization is fundamentally
different from traditional keyframe-based approaches that
simply drop non-keyframes. We preserve all the information
(IMU and edge alignment) from non-keyframes by only per-
forming marginalization after the newest state comes, and

the system is then updated (step 1 in front marginalization).
Also, by marginalization, we ensure that the time period
for each IMU preintegration is bounded in order to bound
the accumulated error in the IMU measurements. Two-way
marginalization preserves the relations between states and
serves as the prior links in the graph model (Fig. 3).

6.6 Optimization with Robust Norm

Based on the residual functions defined in (17) and (19),
we operate on the error state and optimize (13) using the
Gaussian-Newton method, which iteratively minimizes

min
δX
||bp −HpX||2 +

∑
k∈Si

||rSi(ẑ
k
k+1,X ) + Hk

k+1δX||2Pk
k+1

(22)

+
∑

(i,j)∈Sc

||rSc
(ẑji ,X ) + Hj

i δX||
2
(Wj

i )
−1Pj

i

and then updates

X̂ = X̂ ⊕ δX (23)

until convergence. Hk
k+1 and Hj

i are the Jacobian matrices
of the inertial measurements and visual measurements with
respect to the states.

To increase the robustness of our proposed system, Wj
i

changes in each iteration to further eliminate the possible
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outliers in edge alignment that pass the DE-A self check
(Sect. 5.3) and IMU-aided external check (Sect. 6.4). Wj

i

is computed according to the Huber norm thresholding on
the current estimate

(Wj
i )ul =

 I3×3, if ||Rj
0(p

0
i − p0

j )− t̂ji || ≤ ct
ct

||Rj
0(p

0
j−p0

i )−t̂
j
i ||
I3×3, otherwise

(24)

(Wj
i )lr =

 I3×3, if ||2[(q̂ji )−1(q0
j )
−1q0

i ]xyz|| ≤ ca
ca

||2[(q̂j
i )

−1(q0
j )

−1q0
i ]xyz||

I3×3, otherwise,

(25)

where (Wj
i )ul is the upper left 3×3 matrix of Wj

i , (W
j
i )lr

is the lower right 3 × 3 matrix of Wj
i , I3×3 is an identity

matrix, and ct and ca are the given translation and angular
threshold, respectively.

7 Experiments

For sensing, we use a VI-sensor1 which consists of a MEMS
IMU and two global shutter cameras with a fronto-parallel
stereo configuration. A power efficient small-form factor
computer, the Intel NUC2 with a dual-core CPU i5-4250U
running at 1.3 GHz and 16 GB RAM is used for the com-
puting needs. All the algorithms are developed in C++ with
ROS as the interfacing robotics middleware. The IMU gen-
erates data at 200 Hz and the stereo camera produces time
synchronized data at 25 Hz.

7.1 Real-time Implementation

Component Average Computation Time Thread
Driver 1 ms 0

Edge Alignment 11 ms 1
Canny Edge Detection 2 ms 1

Distance Transform 2 ms 1
Block Matching 8 ms 1

Graph Optimization 6 ms 2
Two-way Marginalization 3 ms 2

Loop Closure 28 ms 2

Table 1: Average computation time of the main time-
consuming components of our proposed system.

To achieve real-time performance we set the finest res-
olution for edge alignment to be 320×240. To estimate the

1 http://www.skybotix.com/
2 http://www.intel.com/content/www/us/en/nuc/

overview.html

depth map from the stereo camera, we use a block match-
ing algorithm implemented in OpenCV (StereoBM). Since,
the proposed edge alignment requires depth values at edge
pixels only, a simple stereo block matching suffices for
our needs. We adopt image pyramids (with three levels) in
the edge alignment to handle the large image displacement
caused by fast motion and increase the speed of convergence
for the underlying iterative optimization procedure. We set
the size of the sliding window to be 30. The threshold of
the average reprojection distance of the edge alignment self
check is set to 5. For the local loop closure module, we firstly
do the cross check of the edge alignment at the coarsest
level, and ignore the candidates that fail this test. We then
do the cross check of the edge alignment with full image
pyramids for the remaining candidates. Meanwhile, we re-
strict the number of cross checks with full image pyramids
so as to limit the maximum time spent on the loop closure
module. The computing times of each component are sum-
marized in Table I.

We do not impose a global prior (like fixing the old-
est pose) when solving equations (13) and (22). Instead, we
solve equations (13) and (22) without any global prior (the
resultant equations may not be well constrained, we thus
use perturbed Cholesky decomposition that ensures positive
definiteness to solve them). The obtained positions and yaw
angles of states in the sliding window after the iteration are
subtracted by the position and the yaw angle difference of
the oldest pose before and after the iteration. We do NOT
enforce a global prior as the pitch and roll angle of the old-
est state in the sliding window are observable. The initial
position and yaw angle of the oldest pose at time instant b0
before the iteration are zero. Prior matrix Λp and prior vec-
tor bp obtained in the marginalization step are relative priors
between states.

7.2 Tracking in Changing Lighting Conditions

We record an image sequence which spans different rooms.
The path spans rooms that are dimly lit, followed by a rather
featureless corridor, which leads to a room lit by sunlight
(brightly lit), followed again by a corridor that is dimly lit
and a bright corridor. In such a situation, where ambient
brightness is changing, it is not appropriate to disable the
camera auto exposure. The charge couple devices (CCDs)
in cameras usually have a low dynamic range. The auto-
exposure module of the camera adjusts the exposure time to
match the mid-tone of the scene to the mid-tone of the cap-
tured image by means of an internal exposure module. This
module is present in almost every camera and allows it to
produce better image quality. Disabling this camera module
to satisfy the photo-consistency assumption is detrimental
to the overall image quality. For example, fixing the expo-
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(a) Transition from indoor corridor
to outdoor corridor.

(b) Transition from outdoor corridor
to indoor corridor.

(c) Featureless and structured sur-
roundings.

(d) Fast changing lighting condi-
tions and strong reflection on win-
dows.

Fig. 6: Part of captured images during a walk around a circular path with various lighting conditions.
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Fig. 7: The estimated trajectory of a walk around a circular
path with different lighting conditions.

sure in a dimly lit room and using this exposure setting in a
brighter room causes severe degradation of image quality.

We note that the previous visual odometry algorithms
which rely on the photo-consistency assumption fail in this
challenging environment. The dense approach proposed by
Kerl et al (2013) fails to produce any meaningful results due
to the violation of the photo-consistency assumption. Fur-
thermore, the feature based algorithms also fail in this situ-
ation because of the rather featureless corridors.

Fig. 7 presents the estimated output of our estimator. The
red curve represents the estimated trajectory, green circles
represent the locations at which new keyframes are inserted
by the edge alignment self check, and blue circles represent
the locations at which edge alignment is detected as failed
by the IMU-aided external check. Some of the images cap-
tured during this experiment are shown in Fig. 6 (a)-(d). The
total distance travelled is about 120 meters and the final drift
is about 1.4 meters. More details can be found in the accom-
panying video.

The segments within blue dashed boxes indicate the lo-
cations at which the captured surroundings transform from
an indoor corridor to an outdoor corridor or from an outdoor
corridor to an indoor corridor (Fig. 6 (a), (b)). Since lighting
conditions change rapidly and greatly, edge detection is not
consistent between frames and results in alignment failure.
Our proposed system is able to detect this alignment fail-
ure by the IMU-aided external check, and this increases the
robustness of the system.

The segments within the purple dashed boxes indicate
the locations at which the captured surroundings are fea-
tureless (Fig. 6 (c)). Since our estimator tracks incremen-
tal motions based on edges instead of sparse features, the
alignment succeeds in most cases. Though occasional fail-
ures exist (see the blue circles), our system overcomes them
by the IMU-aided external check.

The segments within the red dashed boxes indicate the
locations at which the lighting conditions of the captured
surroundings change rapidly and alternately. (Fig. 6 (d)).
The changing and alternating lighting conditions are caused
by the transitions between the glass and borders of the win-
dows. We also notice that there are strong reflections on the
windows on both sides. Our edge alignment module inserts
keyframes frequently to handle these cases (see the green
circles). Again, the IMU-aided external check is required
(see the blue circles).

7.3 Throw it!

In this experiment, we test the proposed system with ex-
treme experimental conditions. This experiment is firstly
designed for demonstration of the superior tracking perfor-
mance of our previous work Ling and Shen (2015). We play
back the recorded data and redo this experiment using the
proposed system in this work. In this challenging experi-
ment, we throw the VI-sensor while walking (Fig. 1). The
total walking distance is about 50 meters and the final po-
sition drift is about 2.24 meters. VI-sensor is thrown eight
times in total. The estimation results of our proposed method



12 Yonggen Ling et al.

−4 −2 0 2 4 6 8 10 12

−2

−1

0

1

2

−5

0

5

10

15
 

 

estimated trajectory
failture detection via DEA self−check
failture detection via IMU prior

Fig. 8: The estimated trajectory of a walk around a circular
path. We throw the VI-sensor while walking.

are shown in Fig. 8. From the figure, we see that our es-
timator can successfully track the motions of these eight
throws, resulting in a smooth estimated trajectory. Though
edge alignment in our proposed system is able to handle
large image displacement caused by challenging motions,
it fails when the motions become more and more aggres-
sive (captured images become more and more blurry, see
the green and blue circles for indications). Inertial measure-
ments are the last resort that provide crucial links between
consecutive states to ensure continuous operation of the es-
timator. Moreover, failure detection via edge alignment self-
check (highlighted with green circles, detailed in Sect. 5.3)
and failure detection via IMU prior (highlighted with blue
circles, detailed in Sect. 6.4) are of vital importance to the
smoothness of the estimated trajectory. In all cases, our local
loop closure is able to largely eliminate drifts after throwing
(Sect. 6.3).

Notice that, to the best of our knowledge, this experi-
ment is the toughest testing for a visual-inertial estimator
that has ever been reported.

7.4 Performance on the EuRoC MAV Dataset

We compare our proposed method and other state-of-the-
art approaches on the public EuRoC MAV dataset (Burri
et al (2016)). The complexity of the sequences in this
dataset varies in terms of trajectory length, flight dynam-
ics, and illumination conditions. The reference methods are
OKVIS (Leutenegger et al (2015)) and ROVIO (Bloesch
et al (2015)). Both OKVIS and ROVIO contain the default
parameters for the EuRoC MAV dataset in their open-source
implementations. Since we use stereo cameras in our pro-
posed system, for fair comparison, we set the “doStereoIni-
tialization” flag to be true in ROVIO, and also use stereo

cameras in OKVIS. To separate the effects of local loop clo-
sure and integrating IMUs, our proposed system is tested
on four settings. For “Edge-Only” setting, neither local loop
closure nor IMU measurements are used; for “Edge+Loop”
setting, local loop closure is used; for “Edge+IMU” setting,
IMU measurements are used; for “Edge+IMU+Loop” set-
ting, both local loop closure and IMU measurements are
used. The accuracy of the estimated position and orientation
is measured using the average relative rotation error (ARE-
rot) and the average relative translation error (ARE-trans)
proposed in Geiger et al (2012). The summaries are shown
in Table 2. No data means the concerned method fails to
converge at some point in the sequence.

OKVIS, a tightly coupled feature-based approach, is the
best in terms of ARE-rot and ARE-trans. Nevertheless, it
fails to track in the V2 03 difficult sequence. The other ap-
proaches are able to track all the sequences successfully. The
ARE-rot and ARE-trans of “Edge+IMU” are smaller than
“Edge+IMU+Loop” in most of the sequences. This is be-
cause local loop closure usually causes a noticeable pose
correction to the latest estimate, which is unfriendly for the
relative metrics of ARE-rot and ARE-trans. The same for
the comparison of “Edge-Only” and “Edge+Loop”. In terms
of the ARE-rot, our proposed method (“Edge+IMU+Loop”)
is better than ROVIO. However, for the ARE-trans, ROVIO
obtains smaller errors than our approach. The reason is that
the estimation of rotation is not related to the scene depth,
its error only depends on the number of pixels that well-
constraints the rotation. ARE-trans greatly depends on scene
depth, thus ROVIO, which is a tight-coupled approach that
jointly optimizes the poses and the scene depth, performs
better than our method.

7.5 Discussions on Convergence Basin

One advantage of our proposed method compared to dense
tracking based on image intensities is that the convergence
basin is larger. Put differently, what it means is, with the pro-
posed formulation, the iterations converge even for a rather
poor initial guess. We evaluate this property via skipping
frames (downsampling the image temporal frequency). Sup-
pose the origin image temporal frequency is fn and the num-
ber of skipped frames is sm. The downsampled temporal
frequency is

f ′n =
fn

1 + sm
. (26)

We use the most difficult sequence (V2 03 difficult) of
the EuRoc MAV dataset to give a detailed assessment of our
system. Since OKVIS fails to track this sequence, we ex-
clude it in this comparison. We compare our system with
ROVIO. The same as the previous experiment, we set the
“doStereoInitialization” flag to be true in ROVIO for fair
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Sequence OKVIS ROVIO Edge+IMU+Loop Edge+IMU Edge+Loop Edge Only
MH 01 easy 0.006715 0.014446 0.009401 0.008921 0.015630 0.015630
MH 02 easy 0.006412 0.014243 0.009286 0.010063 0.016520 0.010659

MH 03 medium 0.007525 0.011873 0.009198 0.009005 0.013628 0.011600
MH 04 difficult 0.005876 0.011875 0.012522 0.011266 0.020757 0.019770
MH 05 difficult 0.004875 0.009175 0.011338 0.010784 0.018719 0.014592

V1 01 easy 0.024244 0.034842 0.035249 0.035605 0.129194 0.106800
V1 02 medium 0.042781 0.054126 0.044258 0.046482 0.054274 0.050339
V1 03 difficult 0.049682 0.067790 0.057715 0.059629 0.069350 0.060957

V2 01 easy 0.018585 0.026823 0.018803 0.018513 0.026975 0.025404
V2 02 medium 0.040857 0.057114 0.053272 0.056820 0.069222 0.065446
V2 03 difficult - 0.075503 0.064237 0.066026 0.087980 0.084640

Table 2: Average relative angle error (ARE-rot, deg/m) of different approaches on the EuRoC MAV dataset. The best result
is bold. No data means the concerned method fails to converge at some point in the sequence.

Sequence OKVIS ROVIO Edge+IMU+Loop Edge+IMU Edge+Loop Edge Only
MH 01 easy 0.000346 0.000915 0.001023 0.000982 0.001041 0.001041
MH 02 easy 0.000375 0.001063 0.001106 0.001253 0.001401 0.001083

MH 03 medium 0.000548 0.001289 0.001884 0.001675 0.002500 0.002563
MH 04 difficult 0.000440 0.003783 0.003586 0.002986 0.004070 0.003987
MH 05 difficult 0.000426 0.001271 0.002179 0.002014 0.003459 0.003357

V1 01 easy 0.000786 0.001543 0.002883 0.002835 0.003666 0.003571
V1 02 medium 0.001311 0.002322 0.003494 0.003982 0.006836 0.006216
V1 03 difficult 0.001204 0.002152 0.002475 0.002509 0.004593 0.004055

V2 01 easy 0.000523 0.001018 0.002081 0.002083 0.002509 0.002508
V2 02 medium 0.001018 0.001794 0.002667 0.002720 0.004530 0.003304
V2 03 difficult - 0.002270 0.002656 0.002496 0.007265 0.006052

Table 3: Average relative translation error (ARE-trans, m/m) of different approaches on the EuRoC MAV dataset. The best
result is bold. No data means the concerned method fails to converge at some point in the sequence.

Skipped Number ROVIO Edge+IMU+Loop Edge+IMU Edge+Loop Edge-Only
1 0.120224 0.069523 0.067445 0.093351 0.088024
2 0.139539 0.076872 0.074963 - -
3 0.182557 0.094589 0.091109 - -
4 0.233408 0.094585 0.079288 - -
5 - 0.115803 0.115535 - -
6 - 0.123581 0.123147 - -
7 - 0.152680 - - -

Table 4: Comparison between different methods with different numbers of skipped frames in the V2 03 difficult sequence
of the EuRoc MAV dataset. Error metrics are average relative angle error (ARE-rot, deg/m). The best result is bold. No data
means the concerned method fails to converge at some point in the sequence.

Skipped Number ROVIO Edge+IMU+Loop Edge+IMU Edge+Loop Edge-Only
1 0.004429 0.011473 0.011459 0.012937 0.012262
2 0.007028 0.017675 0.015349 - -
3 0.011486 0.028945 0.022221 - -
4 0.021452 0.039633 0.031632 - -
5 - 0.039131 0.039562 - -
6 - 0.065406 0.065720 - -
7 - 0.108776 - - -

Table 5: Comparison between different methods with different numbers of skipped frames in the V2 03 difficult sequence
of the EuRoc MAV dataset. Error metrics are average relative translation error (ARE-trans, m/m). The best result is bold.
No data means the concerned method fails to converge at some point in the sequence.
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comparison. Our system runs with four settings (“Edge-
Only”, “Edge+Loop”, “Edge+IMU”, “Edge+IMU+Loop”).
Details are shown in Table 3. No data means the concerned
method fails to converge at some point in the sequence.
ARE-rot and ARE-trans metrics are used for comparison.
ROVIO loses track if the number of skipped frames is equal
to or more than 5 while our system loses track if the num-
ber of skipped frames is equal to or more than 8. The in-
tegration of the IMU has a significant improvement on the
tracking accuracy and robustness. Firstly, it provides an ini-
tial pose estimate for edge alignment, especially for the ro-
tation estimate, which greatly reduces the risks of trapping
in wrong local regions. Secondly, the fusion formulation
involving IMU measurements optimizes velocities, which
helps to bound the poses according to the differentiation
equation. Finally, IMU measurements are noisy but outlier-
free. The integration of IMU measurements is a good refer-
ence to detect tracking failure of the edge alignment module.
The local loop module seems to be useless in terms of ARE-
rot and ARE-trans metrics. However, it relocalizes the latest
pose when the edge alignment fails and the prediction from
IMU measurements is not accurate after long-term integra-
tion. It also helps to bound the poses and velocities within
the sliding window. As a result, the following poses to be
estimated will be bounded according to the differentiation
equation (See that the sections of the skipped number are
more than 4).

7.6 Tracking in an Outdoor Environment with More
Complex Textures and Less Prominent Edge Data

We further test our system performance in an outdoor en-
vironment with more complex textures and less prominent
edge data. There are trees, grass and shadows in the test se-
quence. Our system is able to handle this tracking sequence.
The estimated trajectory is shown in Fig. 9 (a). One of the
captured images is shown in Fig. 9 (b). Corresponding edges
and distance transform are shown in Fig. 9 (c) and (d). Ref-
erence keyframe edges are shown in Fig. 9 (e). The total
travel distance is about 120 meters and the final position
drift is about 1.5 meters. More tracking details can be found
in the supplementary video: https://1drv.ms/u/s!
ApzRxvwAxXqQmgX66v7srdWZNvAs.

8 Conclusions and Future Work

We propose a novel and robust real-time system for state
estimation of aggressive motions. Our system is designed
specifically for aggressive quadrotor flights or other applica-
tions in which aggressive motions are encountered (such as
augmented reality). We employ a novel edge-tracking for-
mulation for visual relative pose estimation. We also pro-
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Fig. 9: Our system is able to track in an outdoor environ-
ment with more complex textures and less prominent edge
data. (a) The estimated trajectory. (b) One of the captured
images. (c) The edges detected in the current frame. (d)
The distance transform of the current frame. (e) The ref-
erence keyframe edges. More tracking details can be found
in the supplementary video: https://1drv.ms/u/s!
ApzRxvwAxXqQmgX66v7srdWZNvAs

pose a semi-tightly coupled probabilistic framework for fu-
sion of sensor states over a sliding window. The multi-thread
framework enables a fast and stable estimate with only the
CPU of an off-the-shelf computing platform. Experiments
have verified the performance of our system and its poten-
tial for use in embedded system applications.

We note that the tightly-coupled methods, that jointly
optimize poses and point depth, outperform our semi-
tightly coupled approach if their front-end trackers work
well. As the future work, we will integrate the front-end
edge tracker and back-end tightly-coupled optimization in a
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whole framework to achieve better performance. The main
challenge is to handle the greatly increased system complex-
ity. A probabilistic formulation of the edge alignment will
also be considered.
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